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A structurally informed human protein–
protein interactome reveals proteome-wide 
perturbations caused by disease mutations
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Dongjin Lee1,2,12, Shobhita Gupta2,3,7, Mateo Torres    1,2,3, Weiqiang Lu    8, 
Siqi Liang    1,2, Jin Joo Kang1,2,3, Charis Eng    4,9,10, Joseph Loscalzo    11, 
Feixiong Cheng    4,5,9,10  & Haiyuan Yu    1,2,3 

To assist the translation of genetic findings to disease pathobiology and 
therapeutics discovery, we present an ensemble deep learning framework, 
termed PIONEER (Protein–protein InteractiOn iNtErfacE pRediction), that 
predicts protein-binding partner-specific interfaces for all known protein 
interactions in humans and seven other common model organisms to 
generate comprehensive structurally informed protein interactomes. We 
demonstrate that PIONEER outperforms existing state-of-the-art methods 
and experimentally validate its predictions. We show that disease-associated 
mutations are enriched in PIONEER-predicted protein–protein interfaces 
and explore their impact on disease prognosis and drug responses. We 
identify 586 significant protein–protein interactions (PPIs) enriched with 
PIONEER-predicted interface somatic mutations (termed oncoPPIs) from 
analysis of approximately 11,000 whole exomes across 33 cancer types and 
show significant associations of oncoPPIs with patient survival and drug 
responses. PIONEER, implemented as both a web server platform and a 
software package, identifies functional consequences of disease-associated 
alleles and offers a deep learning tool for precision medicine at multiscale 
interactome network levels.
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Precision medicine has sparked major initiatives focusing on whole- 
genome/whole-exome sequencing (WGS/WES) and developing tools 
for statistical analyses, all aspiring to identify actionable variants 
in patients1,2. At the center of the vast DNA/RNA sequencing data is 
their functional interpretation, which largely rests on conventional 
statistical analyses and trait/phenotype observations2. Statistics is 
crucial for guiding the identification of disease-associated variants; 
however, traditional WGS/WES studies are commonly underpowered 
for disease risk variant/gene and drug target discoveries because 
very large sample sizes are generally required. Furthermore, the sta-
tistics do not directly elucidate the functional consequence of the 
variants. Therefore, translation of genetic and genomic findings to 

precision medicine is fraught with challenges using traditional sta-
tistical approaches.

Optimal information requires knowledge of the whole protein–
protein interaction (PPI) network, or interactome, within which the 
mutant protein operates. On average, each protein interacts directly 
with 10–15 other proteins3,4; thus, the functional consequence of any 
mutation is not easily (if at all) predicted out of the interactome con-
text. Previous studies5–9 demonstrated that most disease mutations 
disrupt specific PPIs rather than affecting all interactions involving 
the mutant protein. Accurately characterizing such disruptions is 
essential for understanding the etiology of most disease mutations. 
Therefore, it is fundamentally important for precision medicine to 

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-024-02428-4
http://orcid.org/0000-0002-5094-0936
http://orcid.org/0000-0002-9796-1742
http://orcid.org/0000-0003-1349-6597
http://orcid.org/0000-0002-6433-5964
http://orcid.org/0000-0002-3693-5145
http://orcid.org/0000-0002-1153-8047
http://orcid.org/0000-0002-1736-2847
http://orcid.org/0000-0001-7597-6049
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-024-02428-4&domain=pdf
mailto:chengf@ccf.org
mailto:haiyuan.yu@cornell.edu


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02428-4

properties. However, although these single-protein features capture 
the characteristics of all possible interface residues, they cannot distin-
guish interface residues for a protein interacting with different partner 
proteins through which a protein can perform different biological 
functions. Previously, we illustrated the importance of encompassing 
partner-specific features for partner-specific interface predictions5. 
Here, our interaction-partner-specific features include co-evolution 
of amino acid sequences, protein–protein docking and pair poten-
tial. Moreover, we incorporate AlphaFold2-predicted single protein 
structures13 into PIONEER to significantly increase the coverage of 
structure-based features for proteins lacking experimentally deter-
mined structures.

To address the non-random missing feature problem, which can-
not be adequately resolved by commonly used imputation methods5, 
PIONEER’s framework is structured as an ensemble of four deep learn-
ing architectures, including Structure–Structure, Structure–Sequence, 
Sequence–Structure and Sequence–Sequence models (Fig. 1c–f and 
Supplementary Figs. 1 and 2). The Structure–Structure model is used 
for interactions in which both proteins have structural information, 
whereas the Sequence–Sequence model is used for proteins without 
solved structural information. Otherwise, the Structure–Sequence or 
Sequence–Structure model is used, depending on which protein in the 
interaction has structural information. This maximizes the amount of 
information available for each interaction to yield the best possible 
interface predictions while avoiding potential ascertainment biases 
that can lead to overfitting.

For a protein with available structures, PIONEER uses a hybrid archi-
tecture to integrate both structural information embedded through 
graph convolutional networks (GCNs) with auto-regressive moving 
average (ARMA) filters14 and sequence information embedded through 
bidirectional recurrent neural networks (RNNs) with gated recurrent 
units (GRUs)15. For proteins without high-quality structure models, only 
sequence information is embedded via RNNs with GRUs. Using transfer 
learning16, the pre-trained GCNs and RNNs in the Structure–Struc-
ture model and RNNs in the Sequence–Sequence model are deployed 
in the Structure–Sequence model and the Sequence–Structure  
model for the processing of proteins with and without structural infor-
mation, respectively. Furthermore, for each residue in a target pro-
tein, our unique architecture integrates embeddings for each residue, 
overall protein and overall partner protein to make the most accurate 
interface predictions.

Benchmark evaluation of PIONEER
Our evaluation shows that PIONEER outperforms all other avail-
able methods for predicting interfaces of proteins with and without 
structural information (Fig. 2a,b, Supplementary Figs. 3 and 4 and 
Supplementary Tables 1–5). We first used the same exact test set 
that the Structure–Structure model used to evaluate all models for 
a fair comparison. We can see that the incorporation of structural 
information clearly improves the performance (Supplementary 
Table 1). We then compared PIONEER with both partner-specific and 
non-partner-specific methods to carry out comprehensive evaluation 
against current state-of-the-art methods. Methods (such as PeSTo17, 
ScanNet18 and MaSIF-site19) that are not partner-specific will produce 
identical interface predictions regardless of the interaction partners, 
even if they bind at distinct sites of the protein. Our evaluation of all 

determine structural details, particularly the locations of interaction 
interfaces of all protein interactions at proteome scale. A clear limita-
tion for this goal is that only approximately 9% of protein interactions 
have structural models determined by experimental or traditional 
homology modeling approaches (Fig. 1a and Extended Data Fig. 1a). 
Predicting co-complex structures of PPIs is experiencing rapid growth 
resulting from the advent of AlphaFold-based methods as embodied 
in AlphaFold-Multimer10, AF2Complex11 and FoldDock12, but these 
methods are all time-consuming and do not scale to solve whole inter-
actomes with hundreds of thousands of PPIs. Furthermore, it should 
be noted that AlphaFold2-based FoldDock can successfully generate 
high-quality models for only approximately 2% of human interactions 
without known homologous structures12.

Here we present an ensemble deep learning pipeline, termed PIO-
NEER (Protein–protein InteractiOn iNtErfacE pRediction), to generate 
the next-generation partner-specific interaction interface predictions 
for experimentally determined PPIs. By using the available atomic 
resolution co-crystal structures along with homology models, we 
established a comprehensive multiscale structurally informed human 
interactome, which consists of 282,095 interactions from humans 
and seven other commonly studied organisms, including all 146,138 
experimentally validated PPIs for 16,232 human proteins (Fig. 1a and 
Extended Data Fig. 1a). Through this resource, we investigated the 
network effects of disease-associated mutations at amino acid reso-
lution within the structurally informed interactome of PPI interfaces. 
We further explored the widespread perturbations of PPIs in human 
diseases and their significant impact on tumor prognosis and drug 
responses. This newly constructed structurally informed interactome 
database was then combined with disease-associated mutations and 
functional annotations to create an interactive, dynamic web server 
(https://pioneer.yulab.org) for genome-wide functional genomics 
studies. It also allows users to perform on-demand interface predic-
tions using the PIONEER framework. Furthermore, we converted the 
PIONEER framework into a software package that is available to the 
community to accelerate biological research.

Results
The hybrid deep learning architecture of PIONEER
To date, an overwhelming majority of interactions (~91%) still lack reli-
able structural information (Fig. 1a). To address this key limitation, we 
built the PIONEER pipeline to generate partner-specific protein–protein 
interface predictions for all interactions without structural informa-
tion. We constructed our labeled dataset for training, validation and 
testing of our classifiers (Supplementary Data 1): we especially prior-
itize instances where the same protein interacts with multiple interac-
tion partners using distinct interfaces in our labeled dataset to create 
a model that better predicts partner-specific interfaces (Fig. 1b); we 
also require that there are no homologous interactions between any 
two of the datasets to guarantee the robustness and generalization of 
our models and a fair performance evaluation.

We used a comprehensive set of single-protein and interaction- 
partner-specific features for interface prediction (Fig. 1c–f), and both 
groups of features combine biophysical, evolutionary, structural and 
sequence information for in-depth characterization of interfaces. 
Specifically, the single-protein features consist of diverse biophysical 
features, evolutionary sequence conservation and protein structure 

Fig. 1 | Overview of the PIONEER framework. a, The current size of PPIs from the 
eight common model organisms with the coverage of experimentally determined 
co-crystal structures, homology models and the unresolved interactions. b, The 
partner-specific interactions are prioritized in our training dataset for solving 
partner-specific interface predictions. c–f, PIONEER architecture consists 
of an ensemble of four deep learning models that ensures that every residue 
in the interactomes can be predicted with the maximal amount of available 
information, and it uses a comprehensive set of biophysical, evolutionary, 

structural and sequence features for in-depth feature characterization.  
The c and d models are used for interactions in which both proteins and neither 
protein has structural information available, respectively. The GCNs and RNNs 
are used for structure and sequence information embeddings, respectively.  
The e and f models are used for interactions in which only one protein has 
structure information available. The transfer learning was used in e and f. 
Specifically, the pre-trained GCNs and RNNs in c and RNNs in d were deployed  
in e and f as the starting points for model training.
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methods is partner-specific, because we think that the partner-specific 
information can be very important for many biological and biomedical 
applications. It is worth noting that our Sequence–Sequence model, 
which relies solely on sequence information, has better prediction 
performance than all recent state-of-the-art structure-based methods 
that we evaluated, such as PeSTo, ScanNet, BIPSPI+ (ref. 20), MaSIF-site, 
DeepPPISP21, SASNet22 and PIPGCN23 (Fig. 2a,b and Supplementary 
Tables 2 and 3). Most of these methods already use cutting-edge deep 
learning models, illustrating the power of using a comprehensive set of 
single-protein and partner-specific features; it also validates our design 
choice to include RNNs with GRUs in a hybrid architecture, even for 
proteins with known structures. Interestingly, we also found that even 
our previous ECLAIR with structural information is significantly better 
than the above structure-based methods and achieves the second-best 
performance (Fig. 2a and Supplementary Table 2).

We next evaluated the effectiveness of our new models on the 
benchmark testing dataset by assessing the overall performance of 
PIONEER and ECLAIR. We found that PIONEER models with ECLAIR 
features substantially outperform ECLAIR (Supplementary Fig. 5a), 
confirming that our unique hybrid deep learning architecture cap-
tures more information in the features than the previous random 
forest-based models. Moreover, incorporating new features to PIO-
NEER models further improves the prediction performance (Supple-
mentary Fig. 5a), indicating the outstanding representation ability of 
our new features for protein interface predictions. Both improvements 
distinctly demonstrate that our new deep learning architectures and 
new features make significant contributions to PIONEER’s strong abil-
ity to provide accurate PPI interface predictions. We then analyzed the 
feature significance to evaluate the contributions of different features 
in PIONEER architecture. As the Structure–Structure model uses the 
most comprehensive set of features, we retrained this model by itera-
tively removing each individual feature for the feature significance 
evaluation. We found that the complete PIONEER model achieves the 
best performance, and each individual feature contributes to the pre-
diction. The solvent-accessible surface area (SASA) feature makes the 
largest contribution, and the co-evolution and conservation informa-
tion also make substantial contributions, highlighting the importance 
of biologically derived features for the characterization of interaction 
interfaces (Supplementary Fig. 5b). We next assessed the comparison 
between relative SASA and absolute SASA for interface predictions 
and found that the relative SASA is more informative (Supplementary 
Fig. 5c). We also found that the inclusion of AlphaFold2-predicted 
single protein structures for the proteins without experimentally 
determined structures improved the PIONEER interface predictions 
(Supplementary Fig. 5d,e).

Recently, several AlphaFold-based methods, such as AF2Com-
plex, FoldDock and AlphaFold-Multimer, were developed to gener-
ate structural models for multi-chain protein complexes. However, 
they are very computationally intensive and not scalable to whole 
interactomes. In comparison, PIONEER is approximately 1,000, more 
than 2,000 and more than 5,500 times faster than AF2Complex, Fold-
Dock and AlphaFold-Multimer, respectively. Additionally, it requires 
only 21.20%, 18.24% and 15.18% of memory consumption compared 

to AF2Complex, FoldDock and AlphaFold-Multimer, respectively 
(Supplementary Fig. 6a,b). The significantly better time and resource 
efficiency of PIONNER ensures its applicability across entire interac-
tomes. From the performance comparison based on different pLDDT 
scores (Supplementary Figs. 5c and 6c–g), we can see that the per-
formance of AlphaFold-based methods improves with the increase 
of pLDDT scores. PIONEER, however, does not rely on the quality of 
AlphaFold2-predicted structures and can still learn valuable infor-
mation from low-quality AlphaFold2-predicted structural regions, 
solidifying the robustness of PIONEER. It is worth noting that, different 
from PIONEER, which focuses only on finding the interface residues 
themselves, the AlphaFold-based methods are focused on predicting 
the structure of the entire co-complex. This means that even small 
shifts in modeling the interface area can impact the interface residue 
predictions significantly. Here, we show an interesting example (Sup-
plementary Fig. 6h–k) in which AlphaFold-based methods place the 
two protein structures in different complex conformations, compared 
to the known experimental structure. These erroneous placements 
result in the misclassification of interface residues. In fact, PIONEER 
and AlphaFold-based methods have fundamentally different use cases: 
for genome-scale studies, PIONEER has been shown to have the best 
predictive performance over all other published methods that we evalu-
ated to accurately predict interface residues and, to our knowledge, 
is the only viable option for modeling whole PPI interactomes; on the 
other hand, AlphaFold-based methods should be used to study specific 
PPIs or complexes, especially if three-dimensional (3D) atomic models 
are required. Also, in contrast to AlphaFold-based methods, users can 
easily modify and retrain our model based on their own needs on even 
a single GPU, which ensures PIONEER’s high flexibility to researchers.

We further applied PIONEER on a widely used Critical Assessment 
of PRedicted Interactions (CAPRI) benchmark decoy set, Score_set24. 
This dataset contains docking models submitted by 47 participants 
for proteins from bacteria, yeast, vertebrates and artificial design. We 
removed duplicated targets as well as those without corresponding 
UniProt25 sequences, resulting in 11 targets that have 15,003 decoys: 
12,986 incorrect, 732 acceptable, 799 medium and 486 high-quality 
predictions based on CAPRI-defined criteria, respectively. We then 
used average PIONEER prediction score at interfaces as the measure-
ment for the model quality evaluation to test the ability of PIONEER in 
assessing protein complex model quality. Extended Data Fig. 1b shows 
a clear distinction between any two types of decoy quality, demonstrat-
ing that PIONEER interface residue predictions provide a clear signal 
to model quality.

Proteome-wide interface predictions by PIONEER
Next, we compiled a comprehensive set of experimentally validated 
binary PPIs for humans and seven model organisms (Arabidopsis thali-
ana, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabdi-
tis elegans, Mus musculus, Schizosaccharomyces pombe and Escherichia 
coli) by integrating information from commonly used databases26, 
including BioGRID27, DIP28, IntAct29, MINT30, iRefWeb31, HPRD32 and 
MIPS33. Here, we focus on binary interactions because the concept of 
interface only applies if two proteins bind directly. We then used the 

Fig. 2 | PIONEER-predicted PPI alleles are enriched in disease-associated 
mutations. a, Comparison of receiver operating characteristic (ROC) curves 
of PIONEER Structure–Structure model with other state-of-the-art structure-
based methods. b, Comparison of ROC curves of PIONEER Sequence–Sequence 
model with other state-of-the-art sequence-based methods. c, Distribution of 
mutation burden at protein–protein interfaces for disease-associated germline 
mutations from HGMD in comparison with mutations from the 1KGP and the 
ExAC. Significance was determined by two-proportion z-test. d, PPI network with 
disease-associated interface mutations. Disease associations of the interface 
mutations were extracted from the HGMD database. Using the PIONEER-
predicted high-confidence interface information, PPIs that have at least one 

disease-associated interface mutation from either one of the two interacting 
proteins were included in the network. Node colors were determined by the 
disease categories of their disease-associated interface mutations. Interacting 
proteins with no known disease-associated interface mutations were colored  
as ‘neighbor’. The final network contains 10,753 PPIs among 5,684 proteins.  
The figure shows the largest connected component of the network that has 
10,706 edges and 5,605 nodes. e, Selected structural complex pairs showing 
germline mutations in the PPI interface. Three disease-associated PPIs with 
mutations are shown: LMNA–BAF (PDB: 6GHD), PPIA–SYUA (PDB: 6I42) and  
VHL–HIF-2α (PDB: 6BVB). Interface mutations are shown in green.
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fully optimized PIONEER pipeline to predict interfaces for all 256,946 
binary interactions without experimental structures or homologous 
models, including 132,875 human interactions (Extended Data Fig. 1a). 
Because we make partner-specific interface predictions for every resi-
due of every protein, and there are, on average, more than 10 interac-
tions per protein, we made predictions for more than 275 million residue 
interaction pairs. By combining PIONEER interface predictions with 
25,149 interactions (~9%) with experimental or homology models, we 
generated a comprehensive multiscale structural human interactome, 
in which all interactions have partner-specific interface information at 
the residue level, together with atomic resolution 3D models whenever 
possible. We then analyzed the residue distribution within interaction 
interfaces based on both different groups categorized by biochemical 
properties34–36 and each individual residue. We observed that charged 
residues are more enriched in the interfaces, and some residues, such as 
cysteine, tryptophan, methionine and histidine, appear less frequently 
in interfaces (Supplementary Fig. 7). These results agree well with pre-
viously reported statistics37,38 and further suggest the importance of 
biophysiochemical properties in protein interface predictions.

To comprehensively evaluate the quality of our predicted inter-
faces and their biological implications, we performed large-scale 
mutagenesis experiments to measure the fraction of disrupted inter-
actions by mutations in our predicted interfaces at varying confidence 
levels, in comparison to that of known interface and non-interface 
residues from co-crystal structures in the Protein Data Bank (PDB)39. 
Using our Clone-seq pipeline40, we generated 2,395 mutations on 1,141 
proteins and examined their impact on 6,754 mutation interaction 
pairs through a high-throughput yeast-two-hybrid (Y2H) assay for 
a large-scale experimental validation. We observed that mutations 
at PIONEER-predicted interfaces disrupt PPIs at a very similar rate 
to the mutations at known experimentally determined interfaces, 
and both of their disruption rates are significantly higher than that 
of known non-interfaces (Extended Data Fig. 1c). Therefore, our 
large-scale experiments confirm the high quality of our interface pre-
dictions and the validity of our overall PIONEER pipeline. Because 
interaction disruption is key to understanding the molecular mech-
anisms of disease mutations8,40, our experimental results indicate 
that PIONEER-predicted interfaces are instrumental in prioritizing 
disease-associated variants and generating concrete mechanistic 
hypotheses.

PIONEER-informed interfaces enriched with disease 
mutations
Because disruption of specific PPIs is essential for the pathogenicity 
of many disease mutations6,7,41, we next measured the enrichment of 
known disease-associated mutations from the Human Gene Mutation 
Database (HGMD)42 in PIONEER-predicted interfaces and compared 
it to known interfaces from co-crystal structures. We found that the 
residues predicted by PIONEER with a high interface confidence show 
a very similar rate of disease mutation enrichment to those of known 
interfaces (Extended Data Fig. 1d). We observed that 251,368 (~98%) out 
of all 256,946 binary interactions have at least one or more predicted 
interface residues that fall into high or very high confidence categories 
(Supplementary Fig. 8), indicating that PIONEER provides meaningful 
structural information for almost all human PPIs. In fact, each bin with 
a higher confidence of predicted interfaces is more likely to contain 

disease-associated mutations than the previous bin, demonstrating 
the strong correlation between PIONEER prediction scores and true 
protein function (Extended Data Fig. 1d). We further analyzed the distri-
bution of population genetic variants and found that their enrichment 
in PIONEER-predicted interfaces and non-interfaces matches well with 
that of known interfaces and non-interfaces, respectively (Extended 
Data Fig. 1e). The results also show that there is a depletion of com-
mon variants (that is, not deleterious) in both known and predicted 
interfaces, indicating that PIONEER predicts functionally important 
interface variants effectively. We also found that, compared to vari-
ants identified in individuals from the 1000 Genomes Project (1KGP)43 
and the Exome Aggregation Consortium (ExAC)44, disease-associated 
mutations from HGMD are more significantly enriched in PPI inter-
faces of the respective proteins7 (Fig. 2c). Moreover, as predicted by 
CADD45 and FoldX46, the population variants in PIONEER-predicted 
interfaces are more likely to adversely affect protein functions than 
those in PIONEER-predicted non-interfaces (Supplementary Fig. 9), 
which confirms that deleterious variants preferentially occur in pro-
tein–protein interfaces6,8.

To further evaluate whether the disease-associated mutations 
were enriched in PIONEER-predicted PPI interfaces, we next catego-
rized the disease-associated germline mutations from HGMD into 
seven major disease groups47, including autoimmune, cancer, cardio-
vascular, metabolic, neurological, pulmonary and an additional ‘other’ 
category. We identified 10,753 PPIs among 5,684 proteins that had at 
least one disease-associated interface germline mutation (Fig. 2d and 
Supplementary Table 9), among which 9,795 (~91%) have such interface 
mutations on one protein (the other protein colored as ‘neighbor’) and 
958 (~9%) on both interacting proteins. Overall, this network analysis 
shows that PIONEER-predicted PPI interfaces are altered by broad 
disease-associated mutations across multiple disease categories. To 
highlight the power of PIONEER-predicted interfaces, we examined 
three PPI interfaces with germline alleles. The germline mutation 
p.Lys542Gln on LMNA buried in the interfaces of LMNA and BAF (Fig. 2e) 
is associated with progeroid disease48. One loss-of-function PPIA muta-
tion p.Ala53Glu in the interfaces of PPIA–SYUA (Fig. 2e) was identified in 
patients with early-onset Parkinsonʼs disease49. The germline mutation 
p.Gly537Arg on HIF-2α associated with polycythemia vera50 is located in 
PIONEER-predicted VHL–HIF-2α interfaces (Fig. 2e) and disrupts VHL 
binding via impairing ubiquitination and proteasomal degradation of 
HIF-2α51,52. Taken together, PIONEER-predicted protein–protein inter-
face mutations convey crucial structural information in delineating 
the functional consequences for disease mechanisms at the atomic 
and allele levels.

PIONEER-predicted oncoPPIs across 33 cancer types
We next investigated the somatic mutations from patients with cancer 
in the context of PIONEER-predicted interfaces. In total, we collected 
approximately 1.7 million missense somatic mutations from the analysis 
of approximately 11,000 tumors across 33 cancer types from The Cancer 
Genome Atlas (TCGA)53. We found significant enrichment of somatic 
missense mutations in PIONEER-predicted PPI interfaces compared to 
non-interface regions (Fig. 3a and Supplementary Data 2). Specifically, 
this significant enrichment was observed in 31 out of the total 33 cancer 
types regardless of the overall mutation burden. In lung squamous 
cell carcinoma, one of the cancer types that has the highest mutation 

Fig. 3 | A landscape of oncoPPIs identified by PIONEER across 33 cancer types 
(~11,000 cancer genomes). a, Distribution of missense somatic mutations 
in protein–protein interfaces versus non-interfaces across 33 cancer types/
subtypes from TCGA. Data are represented as violin plots with underlaid box 
plots, where the middle line is the median; the lower and upper edges of the 
rectangle are the first and third quartiles; and the lower and upper whiskers of 
the violin plot represent the interquartile range (IQR) × 1.5. Significance was 
determined by two-tailed Wilcoxon rank-sum test. The n numbers and P values 

are shown in Supplementary Table 10. b, Circos plot displaying significant 
putative oncoPPIs harboring a statistically significant excess number of missense 
somatic mutations at PPI interfaces across 33 cancer types. Putative oncoPPIs 
with various significance levels are plotted in the two inner layers. The links 
(edges, purple) connecting two oncoPPIs indicate two cancer types sharing the 
same oncoPPIs. Selected significant oncoPPIs and their related mutations are 
plotted on the outer surface. The length of each line is proportional to −log10(P). 
All P values were adjusted for multiple testing using the Bonferroni correction.
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load per exome, we observed 29 variants per 1 million amino acids 
affecting PPI interfaces, whereas the rate for non-PPI interface region 
is 23 (P = 1.3 × 10−11). For thyroid cancer, with the lowest mutation load, 

the difference is 27 for PPI interfaces versus 9 for the remainder of the 
protein sequences (P < 10−16). To account for the potential bias in this 
analysis due to data sources, we divided our whole structural human 
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Fig. 4 | PIONEER-predicted oncoPPIs are associated with patient survival. 
a, Selected structural complex pairs showing somatic mutations in the oncoPPI 
interfaces. Interface mutations are shown in green. b, Survival analysis of six 
exemplary PPI-perturbing mutations in diverse cancer types. MUT, mutations. 
Significance was determined by two-sided log-rank test. The n numbers are 
shown in Supplementary Table 12. c, Example of PIONEER partner-specific 

interface prediction. The mutations CCND1 p.Lys114Arg and CCND1 p.Glu162Lys 
are shown in green and pink, respectively. d, Experimental validation of the 
partner-specific interface predictions in c by co-immunoprecipitation using 
HEK293T cells. WB, western blotting; IP, immunoprecipitation. The experiment 
was repeated three times independently.
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interactome into three categories—experimental structures (PDB, 
6.2%), homology models (2.8%) and PIONEER predictions (90.9%)—and 
performed the enrichment analysis for each category separately. The 
results showed that the same enrichment pattern is independent of 
the data source, suggesting the robustness of PIONEER interface pre-
dictions (Supplementary Fig. 10). We next sought to identify PPIs sig-
nificantly enriched with somatic mutations in their interfaces (named 
oncoPPIs) in both cancer-type-specific and pan-cancer analyses. Our 
analysis yielded a total of 586 statistically significant oncoPPIs across 33 
cancer types (Fig. 3b and Supplementary Data 3), including KRAS–BRAF, 
TP53–EGLN1 and TP53–TP53BP2 across 10 cancer types.

We then turned to analyze the clinical sequencing data from 
MSK-MET, a pan-cancer cohort of over 25,000 patients spanning 50 
different tumor types54. Of the 157,979 missense mutations that we 
investigated, 40,526 (~26%) were identified to affect 15,523 unique PPI 
interfaces. Focusing on the PPIs that were disturbed in at least 10 sam-
ples in a specific cancer type, we performed survival analysis to iden-
tify clinically actionable oncoPPIs whose disruption is significantly 
associated with patient survival. KRAS has been reported to co-mutate 
with NF1 in response to GTP hydrolysis55. We identified that mutations 
of KRAS–NF1 interface residues, such as Asp30 and Glu31 on KRAS 
(Fig. 4a), are significantly associated with poor survival rate com-
pared to the wild-type (WT) group in pancreatic cancer (P = 2.7 × 10−18; 
Fig. 4b). SPOP plays a multifaceted role in oncogenesis and progres-
sion by mediating degradation of PTEN56. The SPOP MATH domain 
contains a mutation p.Phe133Val57 on its PIONEER-predicted interface 
for binding to PTEN, which is significantly associated with survival 
rate in prostate cancer (P = 0.0021; Fig. 4b). Patients with several 
PIONEER-predicted interface mutations (Thr231, Pro191 and Arg181 
on TP53; Fig. 4a) between TP53 and KDM4D are significantly associ-
ated with poor survival in soft tissue sarcoma (P = 0.031; Fig. 4b). 
Furthermore, oncoPPI analysis revealed that PIONEER-predicted 
interface mutations on ARIH2–TP53, kinase–substrate (for example, 
KIT–BLK), kinase–E3 ligase (for example, MAPKAPK3–FBXW7) and 
cyclin–E3 ligase (for example, CCND1–FBXO31) are significantly asso-
ciated with survival rate in breast cancer (P = 1 × 10−4), gastrointestinal 
stromal tumor (P = 0.011), non-small cell lung cancer (P = 0.012) and 
endometrial cancer (P = 0.024), respectively (Fig. 4b and Supplemen-
tary Fig. 11). Accumulated evidence suggested that the mutations 
on CCND1 are associated with multiple cancer types58. By analyzing 
PIONEER-predicted oncoPPIs, we found that PIONEER-predicted 
interface mutations on CCND1 are significantly enriched in the 
CCND1–CDK4 interfaces in uterine cancer (P = 0.012) and low-grade 
glioma (P = 0.048). We identified that CCND1 interacts not only with 
CDK4 but also with TSC2 from PIONEER-predicted interfaces. Spe-
cifically, we identified that CCND1 interacts with CDK4 and TSC2 
via two unique sets of interfaces (Fig. 4c). Next, we experimentally 
confirmed this result using co-immunoprecipitation with 293T cells. 
Figure 4d shows that mutation p.Lys114Arg on CCND1 specifically 
disrupts the interaction between CCND1 and CDK4, without disrupt-
ing its interaction with TSC2. Interestingly, mutation p.Glu162Lys on 
CCND1 does not disrupt its interaction with CDK4 but does disrupt 
its interaction with TSC2. Mutations p.Lys114Arg and p.Glu162Lys on 
CCND1 are associated with myeloma59 and lung cancer60, respectively. 

These results further demonstrate that PIONEER-generated struc-
tural human interactome can uncover tumorigenesis with distinctive 
functions corresponding to distinct interfaces, even for those on the 
same proteins.

PIONEER-informed alleles alter ubiquitination by E3 ligases
E3 ubiquitin ligases are involved in cellular transformation and tumo-
rigenesis by targeted protein degradation61,62. Identifying how somatic 
mutations alter PPIs of E3 ligases may offer novel targets for develop-
ment of targeted protein degradation therapies63. We investigated 
4,614 PIONEER-predicted oncoPPIs connecting 355 E3 ligases anno-
tated from E3Net64 and UbiNet2.0 (ref. 65) databases. We next focused 
on 204 oncoPPIs connecting E3 ligases with significant association 
with patient survival rates and/or significant association with drug 
responses measured in tumor cell lines or patient-derived tumor xeno-
graft (PDX) mouse models (Supplementary Table 13).

Figure 5a illustrates the selected examples of the most significant 
PIONEER-predicted oncoPPIs of E3 ligases (Supplementary Table 14). 
Among these 204 oncoPPIs, FBXW7 has the highest number of onco-
PPIs (47/204; Supplementary Fig. 12 and Supplementary Table 15). 
FBXL17 is a multiple-RING E3 ligase that specifically recognizes and 
ubiquitinates the BTB proteins66. We found that PIONEER-predicted 
PPI-perturbing mutations on FBXL17–KEAP1, such as p.Ser102Leu on 
KEAP1, are significantly associated with poor survival in non-small cell 
lung cancer (P = 1.6 × 10−13; Fig. 5b). A multiple-RING E3 ligase complex 
ANAPC1–ANAPC2 (Fig. 5a) is positively regulated by the PTEN/PI3K/
AKT pathway and modulates ubiquitin-dependent cell cycle progres-
sion67. We found that PIONEER-predicted PPI-perturbing mutations 
on ANAPC1–ANAPC2 is associated with resistance to a PI3K inhibitor, 
BKM120 (P = 0.0043; Supplementary Fig. 13a). ITCH, a HECT-type 
E3 ubiquitin ligase, has been reported to mediate BRAF kinase 
poly-ubiquitination and promote proliferation in melanoma cells68. 
We found that PIONEER-predicted PPI-perturbing mutations on BRAF–
ITCH, such as p.Val600Glu and p.Lys601Glu on BRAF, are significantly 
associated with sensitivity to dabrafenib (an ATP-competitive inhibitor; 
P = 1.7 × 10−21; Supplementary Fig. 13b). STUB1, a U-box-dependent E3 
ubiquitin ligase, was reported to degrade SMAD4, an intracellular sign-
aling mediator of the TGF-β pathway69. Multiple PIONEER-predicted 
PPI-perturbing mutations on STUB1–SMAD4, including p.Gly419Arg 
(Trp, Val) and p.Leu540Pro (Arg) on SMAD4, are significantly asso-
ciated with poor survival in colorectal cancer (P = 0.025; Supple-
mentary Fig. 13c). A single-RING E3 ligase, TRIM24, is an oncogenic 
transcription co-factor overexpressed in breast cancer70. We found 
that PIONEER-predicted PPI-perturbing mutations on TRIM24–H3C1 
(Fig. 5a) are significantly associated with resistance to GDC0941 (an 
EGFR signaling inhibitor; P = 0.028; Supplementary Fig. 13d). Treat-
ment with an EGFR inhibitor suppresses TRIM24 expression and H3K23 
acetylation and, thereby, inhibits EGFR-driven tumor growth71, sup-
porting the PIONEER-predicted oncoPPI findings.

KEAP1 is an adapter of E3 ligase that senses oxidative stress by 
mediating degradation of NFE2L2/NRF2, a key transcription factor in 
multiple cancer types72. Patients with non-small cell lung cancer harbor-
ing PIONEER-predicted oncoPPI mutations on NRF2 have significantly 
worse survival than the WT (P = 0.029; Fig. 5c). KEAP1 recognizes NRF2 

Fig. 5 | PIONEER-predicted PPI-perturbing tumor alleles in ubiquitination by  
E3 ligases. a, A landscape of six E3 complexes with PPI-perturbing mutations.  
The complex or single protein models from PDB or PIONEER modeling are shown. 
The protein in wheat denotes the E3 ligase, whereas the protein in blue denotes the 
specific substrate of E3 ligase. Interface mutations are denoted in green.  
b,c, Interface mutations of KEAP1–FBXL17 (b) and KEAP1–NRF2 (c) are significantly 
correlated with survival rate in non-small cell lung cancer. MUT, mutations. 
Significance was determined by two-sided log-rank test. The n numbers are 
shown in Supplementary Table 12. d, Experimental validation of mutation effects 
on p.Thr80Lys and p.Glu79Lys on NRF2 ETGE motif and p.Leu30Phe on NRF2 

DLG motif on the interactions between KEAP1 and WT NRF2 was determined 
by co-immunoprecipitation with HEK293T cells. WB, western blotting; IP 
immunoprecipitation. The experiment was repeated three times independently. 
e,f, Colony formation assay of H1975 cells transfected with empty vectors and 
NRF2 (WT, p.Thr80Lys) expressing vectors. Data are represented as mean ± s.d. of 
three independent experiments. The dots indicate independent measurements. 
Significance was determined by two-tailed Student’s t-test. g, Growth curves of 
H1975 cells transfected with empty vectors and NRF2 (p.Thr80Lys, WT) expressing 
vectors at day 4. Data are represented as mean ± s.d. of three independent 
experiments. Significance was determined by two-tailed Student’s t-test.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02428-4

Re
la

tiv
e 

gr
ow

th

a

e f g

E3 ubiquitin
ligasesTRIM24

STUB1

ANAPC1

FBXL17

ITCH

KEAP1

H3C1

KEAP1

ANAPC2

BRAFSMAD4

NRF2

PDB 3O37

PDB 6WCQ

PDB 5G05

PDB 7K2M

PIONEER

PIONEER

Lys84

Arg397

Gln163

Cys627

His59

Ser102

Glu842

Cys844

Lys4Gly835

Thr6

Thr80

Glu7

Ala1912

Leu1928

Glu1766

Arg1540

Val600

Lys601

Leu613

Gly615

Gly419

Leu540

Met543

Multiple-RING

Single-RING

HECT

UBOX

b dKEAP1–FBXL17
Non-small cell lung cancer

KEAP1–NRF2
Non-small cell lung cancer

0 20 40 60 80

Time (months)

0

0.2

0.4

0.6

0.8

1.0

MUT
WT

MUT
WT

Su
rv

iv
al

 p
ro

ba
bi

lit
y

P = 1.6 × 10–13 P = 0.029

Vector WT T80K

Vector WT T80

2.0

4.0

Re
la

tiv
e 

gr
ow

th

1 2 3 4

10

5

0

15

Vector
WT
T80K

In
pu

t

IP: HA

70

WT

+

T80K

+

E79K

+

L30F

+

Vector WT

+

IgG

HA–KEAP1
Flag-NRF2

110

70

110

WB: HA

WB: Flag

WB: HA

WB: Flag

P = 5.50 × 10–7

P = 8.05 × 10–6

P 
= 

0.
00

3

P 
= 

0.
01

9

P 
= 

0.
00

7

P = 9.86 × 10–8

kDa

c

0 20 40 60 80

Time (months)

0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

6.0

0
50

Days

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02428-4

structurally through its conserved ETGE (amino acids 79–82) and DLG 
(amino acids 29–31) motifs73,74. We experimentally confirmed the asso-
ciation of NRF2 mutations and WT KEAP1 by co-immunoprecipitation. 
As shown in Fig. 5d, mutations p.Glu79Lys and p.Thr80Lys on NRF2 
ETGE motif (Fig. 5a) reduce the binding of NRF2 to KEAP1, whereas 
mutation p.Leu30Phe on NRF2 DLG motif partially sustains the bind-
ing of NRF2 to KEAP1. The mutation p.Thr80Lys releases NRF2 from 
association with KEAP1 and protects NRF2 from ubiquitination and 
subsequent degradation. We next tested whether p.Thr80Lys on NRF2 
contributes to the proliferation of non-small cell lung cancer cells.  
A pro-proliferative effect of p.Thr80Lys was observed in a colony for-
mation assay (Fig. 5e,f). Overexpression of WT and p.Thr80Lys NRF2 
promoted the growth of the non-small cell lung cancer H1975 cell 
lines harboring WT KEAP1 (Fig. 5g). In summary, PIONEER-predicted 
oncoPPI-perturbing tumor alleles that alter ubiquitination by E3 ligases 
are significantly associated with patient survival, drug responses and 
in vitro tumor growth.

Pharmacogenomic landscape of the PIONEER-predicted 
oncoPPIs
We next turned to inspect correlation between potential oncoPPIs 
and drug responses using high-throughput drug screening data 
(Extended Data Fig. 2a). The datasets include the drug pharmacog-
enomic profiles of more than 1,000 cancer cell lines and approxi-
mately 250 FDA-approved or clinically investigational agents from 
the Genomics of Drug Sensitivity in Cancer (GDSC) database and 
in vivo compound screens using approximately 1,000 PDX models 
to assess patient responses to 62 anti-cancer agents75. For each pair 
of oncoPPI and compound, the drug response characterization 50% 
inhibitory concentration (IC50) vector was correlated with mutation 
status of the oncoPPIs using a linear ANOVA model. Extended Data 
Fig. 2b shows the landscape of the correlations between PPIs and 56 
FDA-approved or clinically investigational anti-cancer drugs. In total, 
we identified 4,473 interface mutations that have significant correla-
tions with drug sensitivity/resistance. Among the most significant 
correlations from PDX models, we found that PIONEER-predicted 
CDK6–BECN1 interface mutations are associated with resistance to 
treatment using a BYL719 plus encorafenib drug combination, whereas 
the mutations in PIONEER-predicted BRAF–MAP2K3 interfaces (for 
example, p.Val600Glu on BRAF and p.Arg152Gln on MAP2K3, both 
found in bladder urothelial carcinoma and glioblastoma) conferred 
significant drug sensitivity to encorafenib plus binimetinib treat-
ment (Extended Data Fig. 2c). In addition, we found significant drug 
resistance to trastuzumab and BYL719 among those cases harbor-
ing mutations in PIONEER-predicted STK4–DDIT4L (for example, 
p.Arg181Gln on STK4) and ORC4–MTUS1 (for example, p.His166Tyr on 
ORC4) interfaces, respectively (Extended Data Fig. 2c). Taken together, 
PIONEER-predicted PPI interface mutations can significantly affect 
drug sensitivity/resistance in anti-tumor treatment using both cancer 
cell lines and PDX models (Supplementary Table 15).

Proteogenomic perturbation by PIONEER-informed interfaces
Recent proteogenomic study showed that somatic mutations altered 
protein or phosphoprotein abundance and further correlated with 
drug responses or survival in patients with cancer76. We next inspected 
whether PIONEER-predicted interface mutations more likely influ-
ence protein abundance in colon adenocarcinoma (COAD) and uterine 
corpus endometrial carcinoma (UCEC). The abundance of phospho-
proteins was quantified using tandem mass tag (TMT) assays by the 
National Cancer Institute’s Clinical Proteomic Tumor Analysis Consor-
tium. We found that PIONEER-predicted interface mutations signifi-
cantly reduced phosphoprotein abundance in both COAD (P = 0.018) 
and UCEC (P = 0.001) (Extended Data Fig. 3a).

We next turned to inspect how the phosphorylation-associated PPI 
mutations identified by PIONEER perturb EGFR–RAS–RAF–MEK–ERK 

signaling networks in COAD (Extended Data Fig. 3b and Supplementary 
Table 18). The mutations involved in this signaling cascade have been 
suggested to regulate oncogenesis in colon and other cancers77,78. 
EGFR dimerization is activated by EGF in the extracellular domain 
(PDB: 3NJP and 2M20; Extended Data Fig. 3b)79,80. Binding of EGF trig-
gers conformational changes in the C-terminal domain (PDB: 2GS6)81 
and results in autophosphorylation of specific tyrosine residues, such 
as Tyr1068 (ref. 82). The C-terminal domain of EGFR is essential for 
adapter protein binding to initiate signal transduction, such as by 
mediating GRB2/SOS1 (ref. 83). Via PIONEER, we identified that two 
mutations, p.Thr1021Ile and p.Thr1074Ile on EGFR C-terminal domain, 
may alter the phosphorylated PPI with downstream adapter protein 
of SOS1 (Extended Data Fig. 3b). SOS1 is a RAS activator that loads 
GTP (PDB: 6EPO)84. Its deficiency attenuates KRAS-induced leukemia 
in mouse model85. A selective SOS1–KRAS PPI inhibitor, BI 1701963, 
was developed for advanced KRAS-mutated solid tumors in a phase 1  
clinical trial86. Using PIONEER, we identified two SOS1–KRAS PPI per-
turbation mutations: p.Tyr884His on SOS1 and p.Gln61His on KRAS 
(Extended Data Fig. 3b). Specifically, Tyr884 and Gln61 form strong 
hydrogen bond and cation-π interaction between KRAS and SOS1. 
We pinpointed that PIONEER-predicted SOS1–KRAS interface muta-
tions are significantly related to trametinib resistance compared to 
WT group (P = 7.6 × 10−12; Extended Data Fig. 3c), offering potential 
pharmacogenomic biomarkers for trametinib (a MEK inhibitor) in 
KRAS-mutant colorectal cancer87. Binimetinib, another MEK-selective 
inhibitor88, is significantly associated with resistance in PDX models  
harboring PIONEER-predicted SOS1–KRAS interface mutations 
(P = 0.0044; Extended Data Fig. 3c).

GTP-bound active RAS recruits RAF proteins (for example, RAF1 
and BRAF) to the plasma membrane to orchestrate MAPK signaling89. 
Extended Data Fig. 3b shows PPIs of both KRAS–RAF1 and KRAS–BRAF 
constructed in one structure complex. Oncogenic mutations on KRAS, 
such as p.Gly12Val, p.Gly13Asp and p.Gln61Leu, are the most frequent 
mutations in common tumors90. PIONEER-predicted interface muta-
tions of KRAS–RAF1, such as p.Arg59Ala and p.Asn64Ala on RAF1, are 
associated with significantly reduced binding affinity of the inter-
action91 but not oncogenic mutations p.Gly12Val and p.Gly13Asp on 
KRAS (PDB: 6VJJ; Extended Data Fig. 3b). In addition, we identified 
that PIONEER-predicted KRAS–BRAF interface mutations are signifi-
cantly associated with resistance of the MEK inhibitor refametinib92 
(P = 4.7 × 10−27; Extended Data Fig. 3c).

The key step for triggering the signaling cascade is that RAS- 
induced RAF dimerization subsequently phosphorylates MEK1/2 pro-
tein kinases78. Of RAF family members, BRAF shows the most potent 
activity90, and the BRAF p.Val600Glu mutation confers a poor survival 
and prognosis in colorectal cancer93,94. Via PIONEER, we identified 
that two PPI interface mutations, p.Gly466Val and p.Asn581Ser on 
BRAF, may mediate how BRAF coordinates MEK1 by its C-lobes in 
the kinase domain (Extended Data Fig. 3b), consistent with a pre-
vious study95. Considering that the E3 ligase ITCH is also involved 
in BRAF regulation and binding to the kinase domain (Fig. 5a), we 
identified that PIONEER-predicted interface residue Val600 on 
BRAF may perturb interaction between BRAF and ITCH (Extended 
Data Fig. 3b). Phosphorylated MEK1 acts as upstream activators to 
phosphorylate ERK1/2 kinase activities in the MAPK cascade96. The 
PIONEER-predicted interface mutation p.Asp179Asn on ERK1 alters 
MEK1–ERK1 signaling network (Extended Data Fig. 3b)97. In summary, 
we showed that PIONEER-predicted oncoPPIs could characterize 
proteogenomic alterations in the EGFR–RAS–RAF–MEK–ERK signal-
ing pathways in colon cancer and other cancer signaling pathways if 
broadly applied.

Construction of the PIONEER interactome web server
In total, our structurally informed interactomes cover all 282,095 
experimentally determined binary interactions in the literature for 
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humans and seven model organisms, including 146,138 experimentally 
determined human interactions (Fig. 1a and Extended Data Fig. 1a). 
The web server is a user-friendly tool for genome-wide exploration 
through which users can browse multiscale structurally informed inter-
actomes and identify functionally enriched areas in these networks 
(Supplementary Fig. 14). It provides rapid on-demand predictions for 
user-submitted interactions. Furthermore, our PIONEER web server 
also contains 161,244 disease-associated mutations across 10,564 
disorders in HGMD and ClinVar98 with their per-disease enrichment 
pre-computed on protein interaction interfaces with 3D spatial clus-
tering at atomic (for interactions with structure models), residue and 
domain levels for all PPIs. By providing a user-friendly tool to visualize 
each protein and its given interactors with all available domain informa-
tion, co-crystal structures, homology models and PIONEER-predicted 
interfaces coupled with all known disease mutation information,  
PIONEER seamlessly allows users to explore the effect of mutations 
on 3D structures. We think that the PIONEER web server will be instru-
mental in uncovering novel relationships among these mutations that 
help study disease mechanisms and develop personalized treatment 
in cancer or other diseases.

Discussion
Here we present a comprehensive, multiscale structurally informed 
interactome framework and web server, PIONEER, to combine seam-
lessly genomic-scale data with structural proteomic analyses. This 
resource is based on our ensemble deep learning framework, which 
accurately predicts partner-specific interaction interfaces for all PPIs 
in humans and seven model organisms. PIONEER outperforms other 
existing state-of-the-art methods, including our previously devel-
oped method, ECLAIR. Moreover, large-scale statistical analysis and 
mutagenesis experiments show that PIONEER-predicted interfaces 
reveal similar biological significance as those of known interfaces. 
Further analysis illustrates that PIONEER plays a pivotal role in dis-
secting the pathobiology of diseases: PIONEER-predicted interfaces 
are significantly enriched with both somatic cancer and germline 
disease mutations; and PIONEER-predicted interface mutations are 
highly correlated with survival of patients with cancer and anti-cancer 
responses in both tumor cell lines and PDX models. Our work is imple-
mented as both a web server platform and a software package to facili-
tate systematic structural analysis in genomic studies, allowing the 
wider scientific community to adopt and further develop upon our  
PIONEER framework.

The experimentally determined binary human interactome is far 
from complete. Extensive efforts have been dedicated both experimen-
tally (such as HuRI99, BioPlex100 and OpenCell101) and computationally 
(such as PrePPI102 and HIGH-PPI103) to ascertaining which pairs of human 
proteins interact. As more protein interactions are detected for human 
proteins, PIONEER will be regularly updated to make interface predic-
tions for newly released PPIs. In addition, the rate of growth of protein 
sequences in resources such as UniProt is much faster than that of 
protein structure resources such as PDB, ModBase104 and AlphaFold2 
database13. Even if our model can predict using solely the sequence, 
we have shown that the structural information greatly improves the 
performance. As such, a limitation is that PIONEER will not reach its full 
potential when the proteins do not have structural information. In the 
future, PIONEER’s performance may be further improved. Specifically, 
PrePPI is a method that uses structural homology to make accurate PPI 
predictions. Although PrePPI does not make interface predictions (thus 
not comparable to PIONEER), the structural information obtained by 
PrePPI can be incorporated into our PIONEER pipeline as an additional 
feature to potentially improve our interface predictions. Furthermore, 
for sequence models, it could be useful to extract representations 
from protein language models105. For structural models, a promising 
area that is worth exploring is to develop a model that captures the 
geometric information of protein structures106. We envision that using 

deep learning architectures that implement geodesic invariance may 
improve the performance.

With rapid advances in sequencing technologies and a large 
number of ongoing genome/exome sequencing projects, including 
TCGA, cardiovascular medicine (that is, the National Heart, Lung and 
Blood Institute’s Trans-Omics for Precision Medicine program107) 
and Alzheimer’s disease sequencing project108, we expect that our 
comprehensive structurally informed interactomes generated by 
PIONEER will help bridge the gap between genome-scale data and 
structural proteomic analyses. With the high-quality and comprehen-
sive map of protein interfaces, there are numerous valuable extensions 
considering the biophysical effects induced by mutations in protein 
interfaces, such as the investigation of disease etiology and the cor-
responding drug prioritization and prediction of specific disease 
pathobiology. The partner-specific property of PIONEER-generated 
structurally informed interactomes also allows us to study the pleio-
tropic effects of genes. Therefore, the powerful and comprehensive 
PIONEER framework will make such extensive research possible and, 
more importantly, provide potentially unforeseen avenues for drug 
design and therapeutics.
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Methods
PPI interface data construction
We compiled 282,095 binary interactions for Homo sapiens, Arabi-
dopsis thaliana, Saccharomyces cerevisiae, Drosophila melanogaster, 
Caenorhabditis elegans, Mus musculus, Schizosaccharomyces pombe 
and Escherichia coli in total, including 9,123 full experimentally deter-
mined binary interactions in humans. The interactions with known 
co-crystal structures in the PDB were used to form the training, valida-
tion and testing datasets to build PIONEER models. The homologous 
structures of PPIs that do not have co-crystal structures were collected 
from Interactome3D109.

We calculated the partner-specific interface residues for those 
interactions with known co-crystal structures in the PDB. SIFTS110 was 
then used to map the UniProt-indexed residues to the PDB-indexed 
residues. To determine the interface residues, we used NACCESS111 to 
assess the change in SASA of the protein in complex and in isolation. 
Specifically, an interface residue is defined as a residue that is a surface 
residue (≥15% exposed surface) with its relative SASA decreasing by 
≥1.0 Å2 in the complex. We reviewed all available structures in the PDB 
for each interaction and considered a residue to be in the interface of 
that interaction if it had been calculated to be an interface residue in at 
least one of the corresponding co-crystal structures. We built the train-
ing, validation and independent benchmark testing datasets by only 
considering interactions for which aggregated co-crystal structures 
have been combined to cover at least 30% of the UniProt residues for 
both interacting proteins. These datasets include a random selection 
of 2,615, 400 and 400 interactions with known co-crystal structures, 
corresponding to 1,191,036, 174,739 and 186,326 residues for sufficient 
model training, validation and testing, respectively. The number of 
positive residues (interface residues) compared to negative residues 
(non-interface residues) in this dataset is 175,911 of 1,015,125 (17.3%), 
25,641 of 149,098 (17.2%) and 27,744 of 158,582 (17.5%), respectively. 
It is important to note that a single residue may be labeled as posi-
tive for a specific interaction while being labeled negative for other 
interactions. In fact, this is the case for 58.5% of all interface residues 
in our study, where 86.6% of the proteins have more than one partner. 
Additionally, we ensured that no homologous interactions or repeated 
proteins existed between any of the two datasets to guarantee the 
robustness and generalizability of our models and a fair performance 
evaluation. We define homologous interactions as a pair of interac-
tions where both proteins in one interaction are homologs of both 
proteins in the other interaction. Pandas (https://pandas.pydata.
org) and Numpy (https://numpy.org) were used for data process-
ing in our work, and Numba (https://numba.pydata.org) was used to 
speed up Numpy-based numerical functions using standard Python 
(https://www.python.org) programming language. Three iterations of 
PSIBLAST112 with an E-value cutoff 0.001 were carried out to determine 
the protein homologs.

Feature characterization
Our previous pipeline, ECLAIR, employed a set of representative fea-
ture groups to describe the residues, including biophysical residue 
properties, evolutionary sequence conservation, co-evolution, rela-
tive SASA and docking-based metrics. While retaining all features 
from ECLAIR here, we also implemented two new feature groups to 
seek a more comprehensive and in-depth feature characterization 
(Supplementary Methods). Clustal Omega113 was used for multiple 
sequence alignment (MSA) when calculating evolutionary sequence 
conservation and co-evolution. CD-HIT114 was used to cluster protein 
sequences to remove the redundancy of MSA for co-evolution, with all 
UniProt sequences serving as the search database for MSA generation. 
ZDOCK115 was used for the protein–protein docking. From each feature 
group, we synthesized a variation of features using scaling, by which we 
mean that each feature used its raw calculated values and normalized 
values against the average of all positions per protein.

Model building
To ensure that every residue is meticulously predicted through the 
maximal amount of available information from both proteins in an 
interaction pair, we built four deep learning models in which each 
model takes different interactions as input based on the availability 
of structures.

 1. Structure–Structure model (Fig. 1c and Supplementary Figs. 1a 
and 2): For interactions where both proteins have structural 
information available, the structure and sequence information 
were embedded through GCNs with ARMA filters and bidirec-
tional RNNs with GRUs, respectively. Specifically, GCN uses the 
structural information from graph representations of protein 
structures where each node represents a residue and each edge 
signifies that two residues are adjacent. For each node, GCN 
incorporates its spatial neighborhood information to generate 
a more comprehensive residue representation, whereas RNN 
explores amino acid sequences to include the sequential neigh-
borhood information of each residue. The RNN extracts the 
upstream and downstream sequence information from each 
residue. Through the concatenation and mean aggregation, the 
residue embeddings of both target protein and partner protein 
were then converted to protein embeddings, respectively. 
Finally, the residue embeddings, target protein embedding and 
partner protein embedding were concatenated and fed into the 
fully connected layers to make prediction for each residue in 
the target protein.

 2. Sequence–Sequence model (Fig. 1d and Supplementary Figs. 1b 
and 2b): For interactions where neither protein has structural 
information, the sequence information of both proteins was 
fed into the RNNs. Next, in a manner similar to that described 
in the Structure–Structure model, the residue embeddings, 
target protein embedding and partner protein embedding were 
concatenated and fed into the fully connected layers to make 
prediction for each residue in the target protein.

 3. Structure–Sequence and Sequence–Structure models (Fig. 1e,f 
and Supplementary Figs. 1c,d and 2): The use of Structure–Se-
quence or Sequence–Structure model depends on whether 
target protein or partner protein has structural information, 
respectively. Transfer learning was used in these two models, 
which means that the pre-trained GCNs and RNNs in the above 
Structure–Structure model and RNNs in the above Sequence–
Sequence model were deployed in Structure–Sequence model 
and Sequence–Structure model for the processing of proteins 
with and without structural information, respectively. Subse-
quently, in a manner similar to that described in Structure–
Structure model and Sequence–Sequence model, the residue 
embeddings, target protein embedding and partner protein 
embedding were concatenated and fed into the fully connected 
layers to make prediction for each residue in the target protein.

We compiled a set of representative protein structures from the 
PDB, ModBase and AlphaFold2 database for each protein. For ModBase 
models, we only consider the models with a ModPipe Quality Score 
(MPQS) ≥ 1.1. The PDB structures have the highest priority, whereas 
the AlphaFold2-predicted structures are the lowest. The structures 
were then sorted by the coverage of UniProt residues based on SIFTS, 
excluding any homologous PDB structures of interacting protein pairs. 
Each residue in a target protein was then reviewed if it has structural 
information; if so, it was predicted using that protein’s first corre-
sponding structure that contains the structural information of that 
residue; otherwise, it was predicted using the sequence information. 
For the partner protein that has structural information, we only used 
the corresponding structure with the highest UniProt coverage. In 
particular, if a protein has multiple structures with identical coverage 
available, these structures were sorted by their qualities (for example, 
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PDB resolution and MPQS). To make our tool more practically useful 
and to avoid the memorization of known interfaces, we use the single 
protein structure that is not from co-crystal or homologous co-complex 
structures to train the model.

Our PIONEER framework was implemented using PyTorch 
(https://pytorch.org); the GCN was written based on torch-geometric 
(https://pytorch-geometric.readthedocs.io). To maximize model 
performance, we carried out comprehensive hyperparameter opti-
mization for the neural network architectures, and the optimal set 
of hyperparameters was determined by maximizing area under the 
receiver operating characteristic (AUROC) curve on the validation 
set. All four models were trained with cross-entropy loss and the Adam 
optimizer; the kernel activation function116 was used in GCNs and fully 
connected layers. The hyperparameters used for these four models can 
be found in our accompanying PIONEER software package. To solve the 
variable length inputs, we trained all four models in a mini-batch mode 
with only a single protein pair.

Performance evaluation
After identifying the best hyperparameters for each model, a thorough 
examination was performed using the benchmark testing set. Models 
were ordered based on their AUROCs on the validation set, which means 
the priorities of models are Structure–Structure, Structure-Sequence, 
Sequence-Structure and Sequence–Sequence, respectively. For the 
overall performance, the raw prediction score of each residue was 
taken from the results of the model with highest priority according 
to the availability of structures of the target protein containing that 
residue and its partner protein. We further compared PIONEER with 
numerous existing state-of-the-art methods, including ECLAIR, PeSTo, 
ScanNet, BIPSPI+, MaSIF-site, DeepPPISP, SASNet, PIPGCN, DELPHI117, 
SCRIBER118 and DLPred119. We also reported performance metrics at 
various discrete and comparable levels of confidence, which consist 
of Very low, Low, Medium, High and Very high prediction categories, 
by evenly separating into fifths our raw prediction scores.

Interface prediction
By further incorporating AlphaFold2-predicted structures, we pre-
dicted interface residues for the remaining 256,946 interactions not 
resolved by either PDB structures or homology models. Each residue 
was then predicted by the model of the ensemble with the highest 
priority according to the availability of structures of the target protein 
containing that residue and its partner protein.

Mutagenesis validation experiments
We performed mutagenesis experiments where we introduced random 
human population variants from the Exome Sequencing Project120 
into predicted interfaces, known interfaces and non-interfaces. We 
randomly selected mutations of predicted interfaces in each of the 
PIONEER prediction categories (from Very low to Very high). We also 
selected random mutations of known interfaces and non-interfaces 
in co-crystal structures in the PDB as positive and negative controls. 
The selected mutations were introduced into the proteins according 
to our Clone-seq pipeline40. We generated 2,395 mutations on 1,141 
proteins and examined their impact on 6,754 mutation interaction 
pairs (either disrupting or maintaining the interactions) using our 
high-throughput Y2H assay.

Y2H assay
Y2H was performed as previously described5. Gateway LR reactions 
were used to transfer all WT/mutant clones into our Y2H pDEST-AD 
and pDEST-DB vectors. All DB-X and AD-Y plasmids were transformed 
into the Y2H strains MATα Y8930 and MATa Y8800, respectively. 
Thereafter, each of the DB-X MATα transformants (WT and mutants) 
was mated with corresponding AD-Y MATa transformants (WT and 
mutants) individually through automated 96-well procedures, 

including inoculation of AD-Y and DB-X yeast cultures, mating on 
YEPD media (incubated overnight at 30 °C) and replica plating onto 
selective Synthetic Complete media lacking histidine, leucine and 
tryptophan and supplemented with 1 mM 3-amino-1,2,4-triazole 
(SC-Leu-Trp-His+3AT), SC-Leu-His+3AT plates containing 1 mg L−1 
cycloheximide (SC-Leu-His+3AT+CHX), SC-Leu-Trp-Adenine (Ade) 
plates and SC-Leu-Ade+CHX plates to test for CHX-sensitive expres-
sion of the LYS2::GAL1–HIS3 and GAL2–ADE2 reporter genes. The 
plates containing cycloheximide were used to select for cells that 
do not have the AD plasmid due to plasmid shuffling. Spontaneous 
auto-activators121, therefore, were identified by growth on these control 
plates. These plates were incubated overnight at 30 °C and ‘replica 
cleaned’ the following day. Subsequently, plates were incubated for 
three more days, after which positive colonies were scored as those 
that grow on SC-Leu-Trp-His+3AT and/or on SC-Leu-Trp-Ade but not 
on SC-Leu-His+3AT+CHX or on SC-Leu-Ade+CHX. Disruption of an 
interaction by a mutation was defined as at least 50% reduction of 
growth consistently across both reporter genes when compared to 
Y2H phenotypes of the corresponding WT allele as benchmarked 
by two-fold serial dilution experiments. All Y2H experiments were 
repeated three times.

Co-immunoprecipitation
The first co-immunoprecipitation assay was conducted to validate 
the PIONEER partner-specific interface prediction. In specific, 
HEK293T cells were maintained in DMEM medium supplemented 10% 
FBS. Cells were seeded onto 10-cm dishes and incubated until 40–50% 
confluency and were transfected with a mixed solution of 3 μg of bait 
construct (CCND1), 3 μg of prey construct (CDK4 or TSC2), 30 μl of 
1 mg ml−1 PEI (Polysciences, cat. no. 23966) and 1.2 ml of Opti-MEM 
(Gibco, cat. no. 31085-062). After 48-h incubation, transfected cells 
were washed three times in 10 ml of DPBS (VWR, cat. no. 14190144), 
resuspended in 500 μl of NP-40 lysis buffer (50 mM Tris, pH 7.5, 150 mM 
NaCl, 5 mM EDTA, 1.0% NP-40) and incubated on ice for 30 min. Whole 
lysate was sonicated on a sonifier cell disruptor (Branson, cat. no. 500-
220-180) for 120 s at 40% amplitude. Extracts were cleared by centrifu-
gation for 15 min at 16,100g at 4 °C. For co-immunoprecipitation, 500 μl 
of cell lysate per sample reaction was incubated with 15 μl of EZview Red 
Anti-FLAG M2 Affinity Gel (Sigma-Aldrich, cat. no. F2426) overnight 4 °C 
with a nutator. After incubation, bound proteins were washed three 
times in NP-40 lysis buffer and then eluted in 200 μl of elution buffer 
(10 mM Tris-Cl, pH 8.0, 1% SDS) at 65 °C for 15 min. FLAG-co-purified 
samples were run on 8% SDS-PAGE gel, and the proteins were trans-
ferred to PVDF membranes. Anti-FLAG (Sigma-Aldrich, cat. no. F1804) 
and anti-MYC (Invitrogen, cat. no. 132500) at both 1:5,000 dilutions 
were used for immunoblotting analysis.

We also validated mutation effects for KEAP1–NRF2 by co- 
immunoprecipitation assay, in which HEK293T cells were co- 
transfected with KEP1 (WT) expressing vector and NRF2 (WT, 
p.Thr80Lys, p.Glu79Lys or p.Leu30Phe) expressing vectors for 48 h. 
Cells were lysed with NP-40 lysis buffer (Beyotime, cat. no. P0013F) on 
ice, and supernatants were incubated with anti-HA antibody (Abmart, 
cat. no. M20003) coupled with protein A/G beads (Santa Cruz Biotech-
nology, cat. no. sc-2003) overnight. Immunoprecipitated complexes 
were washed with NP-40 lysis buffer for three times and were then 
eluted and subjected to western blotting.

Collection and preparation of genome sequencing data
We collected variant data across multiple sources, including TCGA, 
MSK-MET, 1KGP, ExAC, HGMD, Cancer Cell Line Encyclopedia and 
genomic profiling of PDXs from a previous study75. For unannotated 
datasets, we used VEP122 to annotate these variants to identify the cor-
responding amino acid changes. We regarded one PPI as mutated if 
one variant affects the amino acid residue in the interfaces of either 
protein involved in the interaction.
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Significance determination of PPI interface mutations
The significance of PPI interface mutations were tested using the 
method as described in our previous study7. A PPI in which there is 
significant enrichment in interface mutations in one or the other of 
the two protein-binding partners across individuals will be defined as 
an oncoPPI. For each gene gi and its PPI interfaces, we assume that the 
observed number of mutations for a given interface follows a binomial 
distribution, binomial (T,pgi ), in which T is the total number of muta-
tions observed in one gene, and pgi is the estimated mutation rate for 
the region of interest under the null hypothesis that the region was not 
recurrently mutated. Using length(gi) to represent the length of the 
protein product of gene gi, for each interface, we computed the  
P value—the probability of observing >k mutations around this inter-
face out of T total mutations observed in this gene—using the following 
equations:

P (X ≥ k) = 1 − P (X < k) = 1 −
k−1
∑
x=0

(Tx )p
x
gi (1 − pgi )

T−x

pgi =
length of interface

length( gi)

Finally, we set the minimal P value across all the interfaces in a specific 
protein as the representative P value of its coding gene gi, denoted 
P(gi). The significance of each PPI is defined as the product of P values 
of the two proteins (gene products). All P values were adjusted for 
multiple testing using the Bonferroni correction.

PPI system construction of E3 ligases
In total, 355 E3 ubiquitin ligases were retrieved and merged from 
E3Net and UbiNet2.0, and 4,613 E3 ubiquitin ligase-associated onco-
PPIs were analyzed after removing PPIs with homodimers or with-
out gene name. These oncoPPIs include 198 oncoPPIs from the PDB 
database, 197 from homology models and 4,218 from PIONEER. The 
correlations between mutations in these oncoPPIs and anti-cancer 
drug responses in TCGA cell lines, PDX models and cancer survival 
rates from TCGA and MSK MetTropism datasets were then calculated 
(Supplementary Table 15).

Complex crystal structures (PDB: 3O37, 4O1V, 5G05, 5VZU, 6WCQ 
and 7K2M) were accessed from the PDB. The structures in the complex 
without co-crystal structures were retrieved from the AlphaFold2 
database. PIONEER-predicted PPI models were constructed using 
HADDOCK123. The names, mutations and PDB IDs are shown in Sup-
plementary Table 14.

The linear ANOVA model
We used the drug response data of human cancer cell lines from GDSC 
datasets and to investigate the association of PPI interface mutation 
with drug response. For each drug, a drug response vector consisting of 
IC50 values was modeled using the status of a genomic feature (whether 
a PPI interface is mutated), the tissue of origin of the cell lines, screening 
medium and growth properties by fitting a linear model. A genomic fea-
ture–drug pair was tested only if the final IC50 vector contained at least 
10 positive cell lines. The effect size was quantified through Cohen’s d 
statistic using the difference between two means divided by a pooled 
standard deviation for the data. The resulting P values were corrected 
by the Benjamini–Hochberg method. Similar to cell line drug response 
analysis, we also used the drug response data from high-throughput 
screening using PDX models to study the association of PPI interface 
mutation with drug response using linear model. All statistical analy-
ses were performed using the R package (http://www.r-project.org).

Cell viability assay
H1975 cells were transfected with NRF2 (WT, p.Thr80Lys) expressing 
vectors or empty vectors using Lipofectamine 3000 (Thermo Fisher 

Scientific, cat. no. L3000001). For growth curve measurement, 3,000 
cells were planted into 96-well plates, and viability was measured using 
CellTiter 96 AQueous MTS Reagent (Promega, cat. no. G1111) at days 
0, 2 and 4.

Colony formation assay
For the colony formation assay, H1975 cells were seeded into six-well 
plates (2,000 cells per well). After 2 weeks, cells were fixed with 4% 
paraformaldehyde and stained with crystal violet. The relative growth 
index was analyzed using ImageJ124.

Construction of EGFR–RAS–RAF–MEK–ERK signaling network
EGR–EGFR complex was constructed by three crystal structures 
(PDB: 3NJP, 2M20 and 2GS6). Membrane models were built by 
CHARMM-GUI125. SOS1–KRAS complex (PDB: 6EPO), KRAS–RAF1 com-
plex (PDB: 6VJJ), MEK1–BRAF complex (PDB: 6Q0J), MEK1 (PDB: 3WIG) 
and ERK1 (PDB: 4QTB) were accessed from the PDB. Two subunits 
of RAF proteins are represented by RAF1 and BRAF, separately. The 
ITCH–BRAF complex model was generated using HADDOCK. All images 
were processed using PyMOL (https://www.pymol.org). The complex 
names, mutations and PDB IDs are shown in Supplementary Table 18.

Web server development
The PIONEER web server was developed using modern web develop-
ment tools and frameworks. The details are described in the Supple-
mentary Methods.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Mutation data from the TCGA study were downloaded from the National 
Cancer Instituteʼs Genomic Data Commons (https://portal.gdc.cancer.
gov). The MSK MetTropism dataset was downloaded from the cBioPor-
tal (https://www.cbioportal.org/study/summary?id=msk_met_2021). 
Variant data from the 1000 Genomes Project were downloaded from 
the National Center for Biotechnology Informationʼs FTP site (https://
ftp-trace.ncbi.nih.gov/1000genomes/ftp). The ExAC dataset was down-
loaded from the Genome Aggregation Database (https://gnomad.
broadinstitute.org/downloads#exac-variants). Variants collected 
by the HGMD were downloaded from https://www.hgmd.cf.ac.uk/
ac/index.php. Genomic variants and drug response data of human 
cancer cell lines were downloaded from GDSC datasets (https://www.
cancerrxgene.org/downloads/bulk_download). Genomic profiling 
of PDXs and drug response curve metrics of PDX clinical trials were 
downloaded from Supplementary Table 1 of the corresponding paper 
(https://www.nature.com/articles/nm.3954#Sec28). The homolo-
gous structures of PPIs that do not have co-crystal structures were 
collected from Interactome3D (https://interactome3d.irbbarcelona.
org). The ModBase data were downloaded from https://modbase.
compbio.ucsf.edu. The PDB data were downloaded from the PDB FTP 
site (https://files.wwpdb.org/pub/pdb/data/structures/divided/pdb). 
The AlphaFold2-predicted protein structures were download from 
the AlphaFold2 database (https://alphafold.ebi.ac.uk). All other data 
supporting the results in this study are available in the supplementary 
materials and at https://pioneer.yulab.org. Source data are provided 
with this paper.

Code availability
The source code of PIONEER is available at GitHub126.
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Extended Data Fig. 1 | PIONEER provides high-quality interfaces for the whole 
proteome. a, Workflow for compiling interactome PIONEER. The interfaces 
calculated from experimentally determined co-crystal structures or homology 
models are primarily used, the remaining unresolved interactions are predicted 
by PIONEER. b, Percentage of CAPRI decoys having a given average PIONEER 
prediction score at interfaces. Percentages are plotted along the y axis for 4 
classes of CAPRI models. The total number of models in each class is indicated in 
the text in the figure. c, Fraction of interactions disrupted by random population  
variants in PIONEER-predicted and known interfaces. The error bar denotes 

standard error for the binomial distribution. Significance was determined 
by two-sided z-test. The n numbers are shown in Supplementary Table 6. 
d, Enrichment of disease-associated mutations in PIONEER-predicted and 
known interfaces. The error bar denotes standard error for the log odds ratio. 
Significance was determined by two-sided z-test. The n numbers are shown 
in Supplementary Table 7. e, Enrichment of population variants in PIONEER-
predicted and known interfaces. The error bar denotes standard error for the log 
odds ratio. The n numbers are shown in Supplementary Table 8.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Pharmacogenomic landscape identified by the 
PIONEER-predicted interactome network. a, Drug responses evaluated by 
oncoPPIs in the PDX models. Effect size was quantified by Cohen’s d statistic 
using the difference between two means divided by a pooled s.d. for the data. 
Significance was determined by ANOVA adjusted by Benjamini-Hochberg 
method. b, Circos plot displaying drug responses evaluated by putative 
PIONEER-predicted oncoPPIs harboring a statistically significant excess number 
of missense mutations at PPI interfaces, following a binomial distribution across 
selected anti-cancer therapeutic agents in cancer cell lines. Each node denotes 

a specific oncoPPI. Node size denotes significance determined by ANOVA. 
Effect size was quantified by Cohen’s d statistic using the difference between 
two means divided by a pooled s.d. for the data. Node color denotes three 
different types of PPIs: (1) PDB: Red; (2) HM: Blue; and (3) PIONEER: Green. ‘HM’ 
represents homolog models. c, Highlighted examples of drug responses. Data are 
represented as a box plot with an underlaid violin plot in which the middle line is 
the median, the lower and upper edges of the box are the first and third quartiles, 
the whiskers represent IQR × 1.5, and the dots are outlier points. Significance was 
determined by ANOVA. The n numbers are shown in Supplementary Table 16.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Proteogenomics of the PIONEER-predicted 
interactome network. a, Phosphorylation-associated PPI-perturbing mutations 
altered the proteomic changes in COAD and UCEC. The abundance of proteins 
was quantified using the TMT technique. Data are represented as a box plot with 
an underlaid violin plot in which the middle line is the median, the lower and 
upper edges of the box are the first and third quartiles, the whiskers represent 
IQR × 1.5, and the dots are outlier points. Significance was determined by two-
tailed Wilcoxon rank-sum test. The n numbers are shown in Supplementary  
Table 17. b, Phosphorylation-associated PPI-perturbing mutations in the EGFR–
RAS–RAF–MEK–ERK cascade signaling pathway. The whole transmembrane EGFR 
structures were constructed by three crystal structures (PDB: 3NJP, 2M20, 2GS6). 
The membrane model is shown in green. The phosphorylation sites are indicated 
by the symbol 'P'. The detailed interface structure of SOS1–KRAS is also shown in 

the inset. The key mutated residue Gln61 on KRAS forms a hydrogen bond  
(purple dashed line) with residue Thr935 on SOS1, and Tyr884 on SOS1 is  
involved in a cation-π interaction (red dash line) with residue Arg73 on KRAS. 
Two subunits of RAF protein structure models were built by RAF1 and BRAF, 
separately (PDB: 6VJJ and 6Q0J). The two subunits are connected by a disordered 
loop indicated by blue cartoon lines. Two heterodimers of KRAS–RAF1 and 
BRAF–MEK1 constitutes the KRAS–RAF–MEK1 complex. PDB ID of each complex 
structure model is provided. c, Highlighted examples of drug responses. Data are 
represented as a box plot with an underlaid violin plot in which the middle line is 
the median, the lower and upper edges of the box are the first and third quartiles, 
the whiskers represent IQR × 1.5, and the dots are outlier points. Significance was 
determined by ANOVA. The n numbers are shown in Supplementary Table 16.
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