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Abstract 31 

Transcriptional regulatory elements (TREs) orchestrate gene expression 32 
programs fundamental to cellular identity and transitions between 33 
physiological and pathological states. Decoding the regulatory logic of 34 
human biology requires resolving where, when, and how these elements are 35 
transcriptionally engaged. Here, we profiled the active transcriptional 36 
regulatory landscape across all major organ systems and a broad spectrum 37 
of developmental and disease states using PRO-cap, a high-resolution 38 
method that captures nascent transcription start sites with unprecedented 39 
sensitivity and specificity. This atlas of active TREs highlights elements 40 
shaped by their cellular contexts and evolutionary constraints, sheds light on 41 
the genetic architecture of human traits and diseases, and reveals how 42 
patterns of transcription initiation and pausing encode regulatory logic. In 43 
cancer, nascent transcription enables the delineation of lineage-specific 44 
regulatory states, metastatic adaptations, and the co-option of pre-existing 45 
programs. Together, these findings establish nascent transcription as a core 46 
dimension of gene regulation, illuminating principles that govern 47 
development, physiology, and disease. 48 
 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2025. ; https://doi.org/10.1101/2025.09.24.676871doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.24.676871
http://creativecommons.org/licenses/by/4.0/


 
 

 

Introduction 59 

Transcriptional regulatory elements (TREs), such as enhancers and 60 
promoters, shape gene expression landscapes that orchestrate 61 
development, maintain homeostasis, and underpin disease progression. 62 
While traditional annotations integrate chromatin accessibility and histone 63 
modifications, widespread nascent transcription has recently emerged as a 64 
critical marker of active TREs1–4. A comprehensive catalog of nascent 65 
transcriptomes across physiological and pathological states will advance our 66 
understanding of gene regulation in human health and disease.  67 

High-resolution run-on-based methods, such as Precision nuclear Run-On 68 
sequencing with 5′-capped RNA enrichment (PRO-cap), offer exceptional 69 
sensitivity and specificity for detecting nascent transcription at TREs by 70 
mapping active RNA polymerase II at transcription start sites (TSSs) 71 
genome-wide5. To thoroughly delineate the regulatory landscape, we 72 
developed a streamlined and optimized PRO-cap protocol suitable for 73 
diverse human biospecimens, ranging from cadaveric tissues to clinical 74 
biopsies of both solid and liquid organs. The resulting atlas defines the 75 
architecture, evolutionary constraints, and regulatory syntax of active TREs, 76 
offering a detailed lexicon of their function and interplay across physiological 77 
and pathological contexts.  78 

Results 79 

Comprehensive mapping of active transcriptional regulatory elements 80 
by PRO-cap across development, physiology, and pathology 81 

To comprehensively define the active regulatory landscape of the human 82 
genome, we performed PRO-cap on a large collection of biosamples (n=215) 83 
spanning all major human organ systems, pluripotent stem cells with their 84 
differentiated lineages, factor perturbations, and a wide spectrum of disease 85 
contexts (Fig. 1a, b; Supplementary Fig. 1; Supplementary Table 1). This 86 
unprecedented breadth and resolution of nascent transcriptome profiling 87 
enables a panoramic view of regulatory programs across human 88 
development, differentiation, and pathology. We identified 715,296 TREs, 89 
classified as proximal or distal based on their distance to known gene TSSs, 90 
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corresponding to putative gene promoters (some may be proximal 91 
enhancers) and distal enhancers, respectively (Fig. 1c). Based on 92 
transcription initiation patterns, TREs were further categorized as either 93 
divergent, defined by a pair of peaks on opposite DNA strands within 300 bp 94 
of each other6, or unidirectional, with peaks detected on only one strand7. 95 
Genome-wide mapping showed that both classes are broadly distributed and 96 
preferentially enriched in gene-dense regions (Supplementary Fig. 1), 97 
suggesting a widespread role for both divergent and unidirectional elements 98 
in gene regulation. 99 

We next performed systematic benchmarking of our PRO-cap dataset 100 
against tissue-matched epigenomic and transcriptomic datasets. Most PRO-101 
cap elements, both distal and proximal, overlapped with peaks defined by 102 
chromatin accessibility (i.e., ATAC-seq and DNase-seq) or histone marks 103 
(i.e., H3K27ac ChIP-seq), as well as ENCODE candidate cis-regulatory 104 
element (cCRE) annotations based on canonical epigenomic features 105 
(Extended Data Fig. 1a, Supplementary Table 2). Notably, while proximal 106 
elements showed high concordance between PRO-cap and CAGE-seq, the 107 
vast majority of distal elements identified by PRO-cap were missed by 108 
CAGE-seq, which primarily detects stable, capped RNAs. This underscores 109 
the high sensitivity of PRO-cap in capturing enhancer RNAs, a class of short-110 
lived, nascent transcripts5.  111 

Reciprocal analyses confirmed consistent concordance for proximal 112 
elements across different annotations (Extended Data Fig. 1b). However, a 113 
considerable number of distal elements defined by epigenomic features did 114 
not overlap with elements detected by PRO-cap. Previous studies have 115 
shown that these non-overlapping regions often lack regulatory activity in 116 
functional assays, whereas PRO-cap signals robustly predict active 117 
enhancer function3,4. A similar discrepancy was observed between PRO-cap 118 
and CAGE-seq, which has been reported to detect spurious capping events 119 
from exonic regions rather than true transcription initiation sites8,9.  120 

This comprehensive atlas of active TREs provides a foundational resource 121 
for decoding the architectural and functional diversity of TREs and their 122 
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regulatory logic. It enables new insights into how transcription is orchestrated 123 
across human tissues, developmental states, and disease contexts. 124 

Motifs contributing to nascent transcription in open chromatin  125 
As shown in our prior comparison across assays, only a subset of open 126 
chromatin regions displays nascent transcription (Extended Data Fig. 1a). 127 
Furthermore, we found that those with nascent transcription (PRO-cap [+]) 128 
exhibit greater accessibility than those without (PRO-cap [-]) (Extended Data 129 
Fig. 2a), suggesting that enhancer activation further increases chromatin 130 
openness.  131 

To identify the regulatory factors underlying chromatin accessibility and 132 
nascent transcription, we first trained ProCapNet10, a deep learning model 133 
designed to predict base-resolution profiles of transcription initiation, in 134 
human embryonic stem cells (hESCs) (Extended Data Fig. 2b, c; 135 
Supplementary Table 2). By default, ProCapNet is trained on PRO-cap 136 
peaks and accessible background regions lacking transcription initiation, 137 
enabling it to learn sequence determinants of transcription initiation 138 
independent of chromatin accessibility. This design makes it particularly well 139 
suited to our goal of distinguishing factors governing these two processes. 140 
We applied TF-MoDISco11 to contribution scores across all PRO-cap peaks 141 
to decipher TF motif lexicons that regulate nascent transcription. These 142 
included motifs of ubiquitous TFs (e.g., SP, ETS, NFY) and well-known cell-143 
type-specific TFs such as POU5F1-SOX2 and SOX in hESCs (Extended 144 
Data Fig. 2d).  145 

For comparison, we leveraged the previously published ChromBPNet model 146 
trained in hESCs12 to examine motifs contributing to accessibility in ATAC-147 
seq peaks with and without nascent transcription (Extended Data Fig. 2d). 148 
We identified the motif instances based on the contribution scores from 149 
ProCapNet and ChromBPNet models separately and found that TF motifs 150 
impact chromatin accessibility and nascent transcription to varying degrees. 151 
Some TFs, including SP, ETS, NFY, NRF1, and CREB, modulate both 152 
transcription and chromatin accessibility. They are also more abundant in 153 
ATAC-seq peaks with transcription compared to those without, which may 154 
partially explain the higher accessibility observed in these regions. Notably, 155 
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YY1 and SRF motifs were uniquely detected by the ProCapNet model, 156 
supporting their specific involvement in nascent transcription and potentially 157 
accounting for the absence of transcription in certain open chromatin 158 
regions. Furthermore, other TFs such as ZIC, POU5F1-SOX2, and CTCF 159 
predominantly regulate chromatin accessibility, being broadly abundant 160 
across ATAC-seq peaks regardless of transcriptional status.  161 

To further dissect the respective roles of these TF motifs in transcription 162 
versus accessibility, we visualized the contribution scores of individual motif 163 
instances across these two models. TF motifs with dual roles in both 164 
regulatory layers display stronger correlation between models, whereas 165 
those with more dominant effects on either transcription or accessibility 166 
exhibit weaker concordance (Extended Data Fig. 2e). These findings 167 
highlight the complexity of the regulatory landscape, where distinct and 168 
shared TF activities coordinate to fine-tune chromatin state and 169 
transcriptional output. 170 

Tissue-specific TRE usage across the human body 171 

Given that nascent transcription requires specific sequence determinants 172 
beyond those governing chromatin accessibility, we systematically 173 
delineated transcription patterns across diverse tissue types to uncover their 174 
regulatory logic and disease relevance. 175 

To characterize the global landscape of TRE usage, we performed 176 
hierarchical clustering using normalized PRO-cap signal from divergent 177 
distal elements (Fig. 2a, Supplementary Fig. 2). This analysis revealed 178 
robust tissue-level organization of TRE usage, with samples from 179 
functionally related tissues clustering together. For example, cardiac and 180 
skeletal muscle samples grouped into a single striated muscle cluster, while 181 
lymphatic organs, including spleen, lymph node, and appendix, formed a 182 
coherent cluster. While clustering based on unidirectional elements showed 183 
greater intra-cluster heterogeneity, it retained the capacity to distinguish 184 
major tissue types, underscoring the regulatory relevance of both classes of 185 
elements (Supplementary Fig. 2b, d). 186 
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At the individual TRE level, we observed a spectrum of usage patterns 187 
across tissues. Some elements were broadly active but often displayed 188 
variability in expression level, alternative TSS selection, and transcriptional 189 
directionality. Others were highly tissue-restricted, with activity confined to a 190 
single tissue or a limited set of related tissues (Fig. 2b, upper panel). 191 
Zooming into anatomically adjacent regions, such as segments of the large 192 
intestine, revealed both shared and segment-specific TREs, highlighting the 193 
fine-grained resolution of this approach (Fig. 2b, lower panel). Taken 194 
together, our findings establish nascent transcription as a robust readout of 195 
tissue identity that may serve as a powerful framework for dissecting TRE 196 
function in human physiology and disease. 197 

To quantitatively assess tissue specificity, we computed a specificity score 198 
for each divergent element (see Methods). Overall, distal elements exhibited 199 
higher tissue specificity than proximal ones (Extended Data Fig. 3a). Despite 200 
their lower specificity, proximal elements can still effectively group major 201 
tissue types (Supplementary Fig. 2c, d). Furthermore, while most divergent 202 
distal elements were not restricted to a specific tissue type, liver, brain, and 203 
testis samples contained a higher proportion of elements with notable 204 
specificity (Extended Data Fig. 3b), consistent with previous observations2. 205 

We next asked how evolutionary forces shape tissue-specific regulatory 206 
activity. Stratifying divergent elements by specificity score into four quantiles, 207 
we found that elements with the lowest tissue specificity (Q1) were the most 208 
evolutionarily conserved across species, based on phyloP scores², and the 209 
least tolerant to variation in the human population, as measured by context-210 
dependent tolerance scores (CDTS)³ (Fig. 2c). These findings suggest that 211 
broadly active TREs are subject to strong purifying selection. To examine 212 
selective constraints in tissue-specific programs, we identified the top 5% of 213 
divergent elements with the highest expression specificity in each tissue type 214 
(Fig. 2d, Extended Data Fig. 3c). These tissue-restricted TREs exhibited 215 
variable selective pressure: brain-specific elements were under the strongest 216 
constraint, whereas those in the liver and testis showed signatures of more 217 
rapid evolution (Extended Data Fig. 3d). These trends are concordant with 218 
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findings in mouse13, suggesting conserved regulatory logic and turnover 219 
dynamics across mammals. 220 

To understand how tissue-specific regulatory landscapes emerge, we next 221 
examined TRE dynamics across the developmental continuum from 222 
pluripotency to terminal differentiation. Hierarchical clustering revealed that 223 
iPSC- and ESC-derived cells more closely resembled pluripotent stem cells 224 
than corresponding adult tissues (Fig. 1a, Extended Data Fig. 4a). To 225 
experimentally validate TRE activity in lineage-specific contexts, we 226 
compared PRO-cap elements detected in our iPSC and ESC differentiation 227 
panel with those tested in transgenic mouse embryos from the VISTA 228 
Enhancer Browser14. Elements with positive enhancer activity in specific 229 
tissues showed significantly higher PRO-cap signal in the matching cell 230 
types. For example, enhancers with blood vessel activity in mouse embryos 231 
displayed elevated transcription in endothelial cells, while those associated 232 
with nervous system structures were highly transcribed in neural crest and 233 
excitatory cortical neurons (Fig. 2e). 234 

To capture the dynamic remodeling of TRE usage during lineage 235 
progression, we profiled a time course of pancreatic differentiation, from 236 
ESCs to definitive endoderm, pancreatic progenitors, and beta-like cells. We 237 
identified divergent distal elements exhibiting significant temporal variation 238 
and clustered them into distinct transcriptional trajectories (Extended Data 239 
Fig. 4b). We linked these dynamic elements to putative target genes and 240 
performed functional enrichment analysis of the resulting gene sets. This 241 
revealed stage-specific activation of biological pathways consistent with the 242 
underlying expression dynamics. Elements associated with pluripotency 243 
declined over time, while those linked to endodermal and pancreatic lineage 244 
commitment emerged as differentiation progressed. Together, these 245 
analyses demonstrate that nascent transcriptomes measured by PRO-cap 246 
capture tissue- and cell-type-specific TRE usage and resolve temporal 247 
regulatory transitions during differentiation. 248 

Tissue-specific effects of disease- and trait-associated variants 249 
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To investigate the functional relevance of tissue-specific TREs, we assessed 250 
the enrichment of genetic variants associated with diseases and complex 251 
traits. Most variants identified by genome-wide association studies (GWAS) 252 
reside in noncoding regions, potentially altering TRE activity and perturbing 253 
their target gene expression in a tissue-specific manner15,16. Determining the 254 
relevant tissue contexts for these regulatory effects is essential for 255 
understanding physiological and disease mechanisms, as well as informing 256 
precision medicine.  257 

To evaluate the contribution of tissue-specific TRE annotation to trait 258 
heritability, we applied stratified linkage disequilibrium score regression (S-259 
LDSC)17,18 to 176 GWAS summary statistics spanning various human 260 
diseases and complex traits (Fig. 3a, Supplementary Fig. 3). Patterns of 261 
heritability enrichment were highly tissue-specific, recapitulating known 262 
biological processes. For example, immune-related phenotypes exhibited 263 
significant enrichment in blood and lymphoid tissues, while neuropsychiatric 264 
diseases and many traits, including intelligence, educational attainment, 265 
body mass index, and smoking status, showed pronounced enrichment in 266 
brain tissues. Likewise, liver-specific enrichment was observed for 267 
biochemical traits (e.g., levels of bilirubin, low-density lipoprotein, and sex 268 
hormone-binding globulin), consistent with the liver’s roles in metabolism, 269 
transport, and detoxification.  270 

These tissue-specific heritability enrichment profiles also enabled the 271 
distinction of disease subtypes with overlapping etiologies. For instance, 272 
inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and 273 
Crohn’s disease (CD), each with distinct clinical features, including 274 
differences in the location of inflammation. We found that both UC and CD 275 
showed enrichment in immune-related tissues; however, only UC displayed 276 
significant enrichment in the intestines, in line with its canonical disease 277 
manifestation19,20,21 (Fig. 3a). This tissue-specific signal was further 278 
supported at the variant level: a fine-mapped variant, rs6426833, associated 279 
with UC but not CD22, resides in a TRE with pronounced expression in the 280 
rectum (Fig. 3b), consistent with the clinical observation that UC 281 
inflammation typically originates in the rectum, with variable proximal 282 
extension19. Motif analysis predicted that the alternative allele (A) enhances 283 
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binding of AP-1, a TF involved in the inflammatory response in UC23,24. To 284 
test this, we cloned the wild-type and mutant TREs into a luciferase reporter 285 
vector and measured enhancer activity in colorectal cancer cell lines Caco-286 
2 and HCT116. The alternate allele consistently drove higher luciferase 287 
expression than the reference allele, confirming that this variant enhances 288 
regulatory activity in a large intestine-relevant cellular context (Fig. 3c). 289 

These tissue-level patterns underscore the importance of cellular context in 290 
mediating disease risk. In particular, autoimmune disorders are driven by 291 
dysregulation within specific immune cell populations. Thus, to refine our 292 
understanding of genetic contribution to phenotypic variation beyond whole 293 
blood, we leveraged cell-type-resolved TRE annotations across a diverse 294 
panel of blood-derived immune cell types. This analysis revealed that trait-295 
associated variants are consistently enriched in the most biologically 296 
relevant immune cell populations. Specifically, significant enrichment for 297 
white blood cell count phenotype is observed across all leukocyte cell types, 298 
whereas enrichment for specific count traits (i.e., monocyte, lymphocyte) is 299 
largely restricted to their corresponding cell types (Extended Data Fig. 5a). 300 
In addition, analysis of IBD and its subtypes, UC and CD, revealed broad 301 
and pronounced heritability enrichment across all major immune cell 302 
populations (Extended Data Fig. 5b). This pervasive enrichment pattern 303 
reinforces the complex and multifaceted immune dysregulation that 304 
characterizes IBD pathogenesis25.  305 

Furthermore, our analyses of type 1 and type 2 diabetes (T1D and T2D, 306 
respectively) highlighted their distinct pathogenic mechanisms. T1D, driven 307 
by autoimmune dysfunction, exhibited strong enrichment in T cell-associated 308 
TREs, as well as in B and natural killer (NK) cells, but minimal enrichment in 309 
monocytes (Fig. 3d). In contrast, T2D, a metabolic disease, showed its 310 
strongest enrichment in pancreatic tissue (Fig. 3d, Extended Data Fig. 5c). 311 
Building upon this, we generated PRO-cap libraries from T cells isolated from 312 
patients with T1D, enabling direct interrogation of disease-relevant 313 
regulatory activity. We observed significant heritability enrichment of T1D, 314 
but not T2D, among TREs active in patient-derived T cells (Fig. 3d). We next 315 
identified a set of differentially expressed TREs between T cells from T1D 316 
patients and non-diseased donors (Fig. 3e). Motif enrichment analysis of 317 
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these TREs revealed significant enrichment for binding sites of TFs central 318 
to T cell function and autoimmune pathogenesis, including members of RFX, 319 
FOX, SMAD, and AP-1 families (Extended Data Fig. 6a, Supplementary 320 
Table 3). Pathway enrichment analysis demonstrated that differentially 321 
expressed TREs in T1D T cells were significantly associated with core T cell 322 
processes and immune response pathways (Extended Data Fig. 6b).  323 

We next examined whether these differentially expressed TREs harbor 324 
variants associated with T1D. Notably, an intronic enhancer locus within the 325 
IL2RB (interleukin-2 receptor beta) gene, harboring several fine-mapped 326 
variants from the same credible set (CS)26, exhibited robust transcriptional 327 
activity in healthy donor T cells but showed significantly reduced activity in 328 
T1D patient-derived T cells (Fig. 3f, Extended Data Fig. 6c). Given the role 329 
of IL2RB in T cell homeostasis and immune regulation, reduced enhancer 330 
activity may contribute to altered IL-2 signaling in T1D. This dysregulation 331 
could have implications for disease progression and responsiveness to IL-2-332 
based therapies. 333 

Following the demonstration of heritability enrichment in context-specific 334 
TREs, we evaluated their role in mediating genetic effects on gene 335 
expression across tissue types. To this end, we analyzed cis-expression 336 
quantitative trait loci (cis-eQTLs) from GTEx27 using TORUS28 and observed 337 
significant enrichment in distal elements from the corresponding tissue types 338 
(Extended Data Fig. 7a). In contrast, proximal elements showed broader 339 
enrichment across tissues (Extended Data Fig. 7b). As an orthogonal 340 
approach, we assessed whether fine-mapped variants stratified by different 341 
posterior inclusion probability (PIP) thresholds preferentially overlap tissue-342 
specific distal TREs. Indeed, variants with higher PIP values exhibited 343 
increased localization to tissue-matched TREs (Extended Data Fig. 7c). 344 
Interestingly, non-tissue-specific elements were pervasively enriched for 345 
eQTLs across tissues but showed little enrichment for specific GWAS 346 
phenotypes (Supplementary Fig. 3, Extended Data Fig. 7).  347 

Collectively, these results indicate that tissue-resolved PRO-cap annotations 348 
enable systematic interpretation of disease- and trait-associated variants 349 
across both organismal (GWAS) and molecular (QTL) phenotypes. 350 
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Tissue-specific modeling of nascent transcription 351 

Building on these insights, we next aimed to elucidate the sequence features 352 
underlying transcription initiation and to quantitatively model tissue-specific 353 
effects of regulatory variants. To this end, we trained ProCapNet models to 354 
predict base-resolution PRO-cap profiles across multiple tissue types 355 
(Supplementary Fig. 4, Supplementary Table 2). Principal component 356 
analysis (PCA) of each model’s embeddings showed that the first two 357 
components explained 70-80% of the variance across all PRO-cap peaks 358 
and clearly separated TRE categories, such as distal versus proximal and 359 
unidirectional versus divergent elements (Supplementary Fig. 5). The ability 360 
of the models to distinguish TRE classes in the latent space reflects their 361 
effective learning of biologically meaningful sequence features.  362 

At the motif level, Initiators (Inr-CA, Inr-TA) and the TATA box more 363 
frequently influenced TSS positioning (profile task), whereas ETS, CREB, 364 
and NRF1 instances predominantly affected transcription levels (count task) 365 
(Fig. 4a), consistent with previous observations10. When comparing across 366 
models, some TF motifs (e.g., SP, ETS, CREB) were ubiquitously present, 367 
while others (e.g., SRF, MEF2, HNF1) were more restricted to certain tissue 368 
types, reflecting their potential roles in shaping enhancer logic within tissue-369 
specific transcriptional programs.  370 

Given that GWAS variants exhibit tissue-specific effects (Fig. 3a, Fig. 4b) 371 
and our models capture the corresponding sequence syntax, we applied 372 
them to assess context-dependent regulatory variant impact. Notably, tissue-373 
specific modeling helped refine causal inference within GWAS CSs. For 374 
example, statistical fine-mapping of the GWAS trait, albumin measurements, 375 
identified a 95% CS containing two variants (Fig. 4c). The variant 376 
rs17712208, with a lower PIP of 0.249, is in a liver-specific TRE. In silico 377 
mutagenesis using the liver-trained model revealed that the alternative allele 378 
disrupts the HNF1 motif, reducing transcription at TRE e1 (Fig. 4d, e). This 379 
effect was largest in the liver and absent in models from most other tissues. 380 
By contrast, the variant rs79687284, with a higher PIP of 0.750, has little 381 
effect on transcription at either TRE, e1 or e2, across all models.  382 
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This integrated analytical framework demonstrates that combining nascent 383 
transcriptome data with statistical fine-mapping and context-specific deep 384 
learning enables robust functional interpretation of noncoding variants.  385 

Transcription initiation and pausing patterns reveal biological roles 386 
and regulatory mechanisms 387 

While most motifs showed broad effect curves (e.g., CREB), a few exhibited 388 
strong positional effects. Notably, SRF and MEF2 display focused peaks 389 
similar to the TATA-box, likely due to their shared TA-enriched core 390 
sequences (Fig. 5a). These motif-level differences may contribute to the 391 
overall peak shape of TREs, leading us to ask whether variation in 392 
transcription initiation patterns carries biological significance in terms of 393 
regulatory function and evolutionary constraint. Therefore, we characterized 394 
the initiation site architecture by calculating the shape index (SI) for divergent 395 
TREs using their 5’ PRO-cap signal distribution across both strands29,30.  396 
Based on SI values, elements were classified as Peaked (P) or Broad (B), 397 
resulting in three categories per divergent element: P-P, P-B, or B-B (Fig. 398 
5b). This peak shape categorization revealed strong associations with gene 399 
regulatory function and expression breadth. 400 

Across tissues, most TREs exhibited broad initiation patterns (B-B), with P-401 
P elements being relatively rare overall but more frequent in distal than 402 
proximal regions (Fig. 5c). In addition, proximal B-B elements were broadly 403 
active across tissues, whereas P-P elements exhibited high tissue specificity 404 
(Fig. 5d, Supplementary Fig. 6), consistent with prior work showing that 405 
broad promoters are enriched at housekeeping genes29,30. Notably, this trend 406 
extended to distal elements, where B-B regions also displayed more 407 
ubiquitous activity across tissues. Furthermore, B-B elements (both proximal 408 
and distal) showed stronger evolutionary constraints (Supplementary Fig. 7), 409 
recapitulating the inverse relationship between tissue specificity and 410 
evolutionary conservation observed in Fig. 2d. To explore regulatory 411 
connectivity, we analyzed enhancer-promoter associations using the E2G31 412 
model in various tissues (Supplementary Table 2). Distal B-B elements were 413 
linked to a greater number of putative target genes, whereas genes with 414 
proximal B-B elements tended to be regulated by fewer enhancers (Fig. 5e, 415 
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Supplementary Fig. 8). These findings indicate that transcription initiation 416 
profiles offer an additional layer of biological insights beyond what can be 417 
resolved by total read counts at individual elements alone. 418 

Having characterized initiation shape, we next asked whether transcriptional 419 
elongation dynamics vary systematically across tissues. Thus, we leveraged 420 
the base-pair resolution of PRO-cap to measure pause distances, the 421 
distance between the TSS (5’) and the downstream point of RNAPII pausing 422 
(3’) at single-molecule level, across tissues. Pause distances varied across 423 
tissues, revealing three general classes: early (short), intermediate, and late 424 
(long) pausing (Supplementary Fig. 9). This suggests that pause distance 425 
could be a stable, tissue-intrinsic regulatory feature. 426 

To identify regulators of genome-wide Pol II pause site positioning, we 427 
conducted a targeted screen and integrated publicly available datasets to 428 
assess effects of candidate factors using degron-tagged alleles. While acute 429 
depletion of most factors did not substantially alter pause distances, 430 
perturbation of NELF-C resulted in marked shifts (Extended Data Fig. 8). 431 
Loss of NELF-C led to a global increase in pause distances, consistent with 432 
its role in stabilizing promoter-proximal pausing32. Further studies are 433 
warranted to determine how these regulatory influences vary across cell 434 
states and tissues, and whether they contribute to the observed diversity in 435 
pause profiles across the human body. 436 

Subtype-specific transcriptional landscape of leukemia and lymphoma 437 

Given the prominent regulatory specificity observed in immune cells, we next 438 
asked whether similar principles extend to hematologic malignancies. In 439 
particular, leukemias and lymphomas offer a powerful model to investigate 440 
subtype-specific enhancer usage, as they arise from distinct developmental 441 
stages of hematopoietic lineages and are characterized by diverse 442 
oncogenic drivers. Therefore, we employed PRO-cap to map the nascent 443 
transcriptomes in a panel of hematologic malignancy models comprising one 444 
chronic myelogenous leukemia (CML) cell line (K562), three B-cell acute 445 
lymphoblastic leukemia (B-ALL) cell lines (SEM, REH, and NALM-6) and four 446 
germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) lines 447 
(OCI-LY7, SU-DHL-5, KARPAS-422, and Pfeiffer), each harboring distinct 448 
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cytogenetic features, including oncogenic fusion proteins33–38 and aberrant 449 
activation of the MYC 3′ enhancer39. Hierarchical clustering of divergent 450 
distal TREs separated hematologic malignancies in line with their origins at 451 
distinct stages of blood cell maturation (Fig. 6a). 452 

To further resolve subtype-specific regulatory programs, we performed k-453 
means clustering and identified ten TRE modules with coordinated activity 454 
patterns. While modules M2 and M6 were shared across all B-ALL and GCB-455 
DLBCL lines, respectively, the majority were unique to individual subtypes 456 
(Fig. 6a). De novo motif enrichment analysis revealed TF motifs specific to 457 
each module (Extended Data Fig. 9a, Supplementary Table 3), reflecting 458 
distinct mechanisms of regulatory dysfunction. For instance, M4, specific to 459 
REH cells carrying the ETV6-RUNX1 fusion, was enriched for GGAA 460 
repeats, consistent with recent findings that loss of ETV6-mediated 461 
repression at GGAA microsatellite enhancers leads to aberrant gene 462 
activation40. Similarly, modules M8 and M9, specific to SU-DHL-5 and 463 
KARPAS-422, respectively, were enriched for POU2F motifs. Both cell lines 464 
exhibit dependence on a recently identified MYC 3′ enhancer regulated by a 465 
transcriptional triad (POU2F2, MEF2B, and POU2AF1) and show elevated 466 
POU2F2 expression relative to other GCB-DLBCL lines39.  467 

To evaluate the functional importance of these modules in a subtype-specific 468 
manner, we conducted CRISPR interference (CRISPRi) screens at the MYC 469 
locus across six representative cell lines (one CML, three B-ALL, and two 470 
GCB-DLBCL). Silencing of module-specific TREs (e.g., M2) resulted in a 471 
marked reduction of MYC expression in the corresponding lines (e.g., SEM, 472 
REH, and NALM-6), with minimal impact on other subtypes (Fig. 6b, 473 
Extended Data Fig. 9b,c), confirming their selective regulatory function in 474 
distinct malignant contexts.  475 

Together, these results demonstrate the value of TRE profiling for 476 
understanding lineage and oncogenic dependencies in hematologic cancers. 477 
To test the generalizability of this strategy, we next explored its application 478 
in the context of metastatic solid tumors. 479 
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Tissue-specific TRE profiles inform primary site prediction in 480 
metastatic cancers 481 

The clinical management of metastatic cancers can be complicated by the 482 
difficulty in identifying their tissue of origin - an issue that is especially 483 
pronounced in cancers of unknown primary (CUP), which comprise 3-5% of 484 
diagnoses and frequently lack effective therapeutic strategies due to their 485 
elusive origins41. Despite advances in genomic profiling and imaging 486 
technologies, reliable molecular strategies for pinpointing the origin of CUP 487 
remain scarce. We hypothesize that primary tumors retain features of their 488 
tissue of origin and that metastatic cancers preserve the regulatory signature 489 
of the primary tumor. Although primary tumors are not included in our 490 
dataset, the broad coverage of normal tissues may enable inference of 491 
metastatic origins. 492 

To test this, we leveraged our nascent transcriptome dataset, which includes 493 
a diverse panel of metastatic tumors (n=23) and normal tissues from multiple 494 
organ systems (Fig. 6c, Supplementary Table 1). We compared the PRO-495 
cap profiles of divergent elements in metastatic cancer samples to those of 496 
normal tissues from the corresponding primary, metastatic, and other tissue 497 
types. Pairwise comparison revealed that most metastatic tumors more 498 
closely resembled their tissue of origin, supporting the hypothesis that 499 
metastatic cancers preserve the molecular signatures of their primary sites 500 
(Fig. 6c, Supplementary Fig. 10a). Additionally, correlations with metastatic 501 
sites were higher than with other tissues, suggesting an adaptation to the 502 
metastatic microenvironment.  503 

To evaluate the predictive utility of these patterns, we trained a linear support 504 
vector classifier using divergent distal elements from normal samples 505 
spanning 15 tissue types. Remarkably, although trained exclusively on non-506 
neoplastic tissues, the model achieved an overall accuracy of 87.0% for the 507 
top-1 prediction and 95.7% for the top-3 predictions in identifying the primary 508 
origin of metastatic tumors (Fig. 6d, Supplementary Fig. 10b). Likewise, 509 
divergent proximal elements yielded comparable prediction accuracy 510 
(Supplementary Fig. 10b). These findings demonstrate that nascent 511 
transcriptome profiling may offer a promising molecular strategy for resolving 512 
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diagnostically ambiguous cases and guiding more precise therapeutic 513 
interventions.  514 

Site-specific metastatic adaptation via enhancer reprogramming 515 

The preferential transcriptional similarity between metastatic tumors and 516 
their corresponding secondary sites, relative to unrelated tissues, suggests 517 
a high degree of plasticity (Fig. 6c). This prompted us to examine whether 518 
specific enhancer programs underlie metastatic dissemination and organ-519 
specific adaptation. We first performed hierarchical clustering of divergent 520 
distal TREs across metastatic biopsies from 4 patients with colorectal cancer 521 
(CRC) and related non-neoplastic tissues (i.e., large intestine, lung, and 522 
brain) (Extended Data Fig. 10a). This analysis uncovered two major patterns: 523 
(i) both brain and lung metastatic lesions retained stronger regulatory 524 
similarity to their tissue of origin (i.e., large intestine) than to distant sites, 525 
which aligns with our prior observation (Fig. 6c); and (ii) within the metastatic 526 
cohort, tumors segregated by their destination site.  527 

To interrogate the regulatory mechanisms underlying organ-specific 528 
dissemination and adaptation, we identified differentially expressed TREs 529 
between lung and brain metastases (Extended Data Fig. 10b). Motif 530 
enrichment analysis of enhancers upregulated in lung metastases revealed 531 
a marked overrepresentation of ETS1, RUNX1, and their composite motifs 532 
(Fig. 6e, Supplementary Table 3), consistent with their established roles in 533 
metastatic progression. Specifically, stromal ETS1 expression in primary 534 
CRC is associated with increased risk of dissemination to the lungs in 535 
patients42. Similarly, previous studies have demonstrated that RUNX1 536 
promotes lung colonization of metastatic CRC in murine models, with 537 
elevated expression correlating with poor clinical outcomes43. Thus, our 538 
results extend these prior observations by suggesting that the coordinated 539 
activity of these TFs may shape the enhancer landscape in lung metastases 540 
of CRC. In contrast, enhancers upregulated in brain metastases showed 541 
significant enrichment for HNF4A and PPARγ motifs (Fig. 6e, Supplementary 542 
Table 3). Although PPARγ signaling and HNF4A expression have been 543 
linked to brain metastatic progression in melanoma44,45, their specific roles in 544 
CRC brain dissemination has yet to be elucidated. This selective enrichment 545 
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of HNF4A and PPARγ motifs in brain metastasis-specific enhancers thus 546 
uncovers a previously unrecognized regulatory axis and nominates these 547 
factors as compelling candidates for mediating colonization of the brain 548 
microenvironment.  549 

To assess the potential driver roles of ETS1 and HNF4A, we first examined 550 
their differential expression in metastatic contexts. Both TFs exhibited 551 
elevated PRO-cap signals at their promoters, consistent with transcriptional 552 
activation (Extended Data Fig. 10c). These factors are also expressed in 553 
non-neoplastic large intestine tissues (Extended Data Fig. 10c), supporting 554 
the notion that metastases may co-opt pre-existing regulatory networks 555 
during dissemination and adaptation. To further contextualize the regulatory 556 
programs associated with metastatic homing, we performed pathway 557 
enrichment analysis of genes linked to enhancers either upregulated in lung 558 
or brain metastases. This analysis revealed shared pathways of cell 559 
adhesion, motility, and vascular development, highlighting core mechanisms 560 
of invasive spread and niche formation in CRC metastasis (Extended Data 561 
Fig. 10d). We also uncovered distinct, site-specific programs: lung 562 
metastases were enriched for pathways related to immune modulation, 563 
whereas brain metastases showed enrichment for pathways central to 564 
microenvironmental adaptation and blood-brain barrier (BBB) remodeling. 565 
Thus, these findings position ETS1 and HNF4A as key mediators of 566 
enhancer reprogramming, highlighting how metastatic tumors hijack lineage-567 
primed regulatory circuits while reshaping their enhancer landscapes to 568 
colonize distinct organs. Together, these results underscore the importance 569 
of context-specific regulatory factors in driving the tissue tropism of 570 
metastatic cancer. 571 

Discussion 572 

Nascent transcription initiation precisely marks active gene promoters and 573 
enhancers1–4. Using PRO-cap across diverse developmental, physiological, 574 
and pathological contexts, we mapped initiation at base-pair resolution and 575 
identified hundreds of thousands of active TREs. This comprehensive atlas 576 
reveals the breadth of regulatory elements that shape cellular and tissue 577 
identity in health and disease. 578 
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These maps provide the foundation to uncover how nascent transcription 579 
operates as a fundamental layer of gene regulation, complementing and 580 
extending the information encoded within the epigenome. In this study, we 581 
examined its interplay with opening chromatin to regulatory machinery. By 582 
systematically comparing chromatin accessibility with or without nascent 583 
transcription in pluripotent stem cells, we identified both shared and distinct 584 
motifs underlying these two layers. These results underscore the importance 585 
of integrating multiple regulatory layers for a comprehensive understanding 586 
of gene control.  587 

Beyond mapping regulatory element activity, our PRO-cap-based approach 588 
captures transcription initiation and pause site architecture at base-pair 589 
resolution, revealing features beyond the reach of other methods and 590 
enabling mechanistic dissection of early transcriptional events. This high-591 
resolution perspective deepens our understanding of the distinct steps 592 
governing gene regulation and how they vary across regulatory element 593 
classes and cell states.  594 

Furthermore, integration with functional genomics enables the prioritization 595 
of likely causal noncoding variants and the characterization of their tissue-596 
specific effects, linking regulatory activity to potential phenotypic outcomes. 597 
In cancer, TRE maps reveal lineage-specific transcriptional programs, trace 598 
the origins of metastases, and uncover dynamic circuits that drive tumor 599 
dissemination and adaptation. These findings provide a mechanistic 600 
framework for understanding how regulatory elements contribute to disease 601 
progression. 602 

Together with other large-scale efforts, our data provide complementary 603 
insights into the architecture of the regulatory genome and help lay the 604 
groundwork for a unified model of transcriptional regulation across diverse 605 
biological contexts. Future integration of TRE maps with gene expression 606 
measurements, such as RNA-seq and PRO-seq, will further refine our 607 
understanding of gene regulatory output. 608 
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Collectively, this detailed catalog of active TREs provides an essential 609 
resource for dissecting gene regulation and advancing applications from 610 
basic molecular biology to clinical genomics. 611 

Methods 612 

Sample collection and PRO-cap library preparation: Snap frozen human 613 
tissue samples from cadaveric or surgical biopsies were obtained from a 614 
range of sources, including ENCODE, and GTEx, as part of the ENCODE 615 
consortium’s coordination Phase 4 efforts, and the National Cancer 616 
Institute’s Cooperative Human Tissue Network (CHTN). Solid tissues were 617 
pulverized on dry ice using a mortar and pestle. Peripheral blood 618 
mononuclear cells (PBMCs) were isolated using Lymphoprep, and specific 619 
immune cell populations were purified from LeukoPaks via fluorescence-620 
activated cell sorting (FACS) using positive or negative selection based on 621 
surface marker expression. Cells were either cultured in-house or obtained 622 
as snap-frozen dry pellets. PRO-cap libraries were prepared as previously 623 
described, with modifications to streamline the protocol, reducing the 624 
experimental time from 3-4 days to approximately 14 hours, while enabling 625 
the use of limited tissue input and low cell numbers from diverse sample 626 
types, without compromising the assay’s sensitivity or specificity. Briefly, 627 
permeabilized cells or pulverized tissues underwent nuclear run-on reactions 628 
to capture nascent RNA. Total RNA was then isolated and subjected to two 629 
rounds of custom adaptor ligation and reverse transcription. Between 630 
adaptor ligations, 5′ cap selection was performed through a series of 631 
enzymatic reactions to enrich for capped nascent transcripts. RNA was 632 
washed, followed by phenol:chloroform extraction and ethanol precipitation 633 
at each step, all under RNase-free conditions. Following PCR amplification 634 
and library clean-up, sequencing was performed on an Illumina NovaSeq 635 
platform. Likewise, we generated PRO-cap libraries from two replicates, 636 
each of 10 million HCT116 cells genetically modified using CRISPR targeting 637 
H. sapiens BRD4, CDK7, CTCF, MED14, POLR2A, RAD21, SMARCA5, 638 
SUPT16H and O. sativa LOC4335696 (OsTIR1 auxin receptor for the auxin-639 
inducible degron system), before and after 6 hours of treatment with 1 μM 5-640 
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Phenyl-1H-indole-3-acetic acid. Details of all biosample and library 641 
information can be found in Supplementary Table 1. 642 

Data preprocessing: This dataset was managed and analyzed using the 643 
Resource Management System (https://github.com/aldenleung/rmsp/). Raw 644 

reads were preprocessed with fastp46 (v0.23.4) for adapter trimming and 645 

unique molecular index (UMI) processing, retaining only reads ≥18 bp for 646 
downstream analyses. Processed reads were aligned to the human 647 
reference genome hg38 (GCA_000001405.15) and ribosomal DNA 648 
(U13369.1) using STAR47 (v2.7.11a). Uniquely mapped reads were filtered 649 
with samtools48 (v1.18) and deduplicated using umi_tools (v1.1.5). FASTQ 650 
files of PRO-cap data from the NELF-C degron lines (NELFC_U, NELFC_T) 651 
were obtained from GSE144786 and reprocessed with the same pipeline, 652 
except that PCR deduplication was omitted due to the lack of UMI 653 
information. The resulting PCR-free, uniquely mapped reads were converted 654 
to bigwig format with biodatatools (v0.0.7) and used for peak calling with 655 
PINTS5 (v1.1.10). For replicates showing good correlation, bigwig files were 656 
merged before peak calling. Identified elements were classified as proximal 657 
(within ±500 bp) or distal (outside ±500 bp) categories based on their 658 
distances to the TSSs of all genes annotated by GENCODE49 (v37). 659 
Sequencing details are provided in Supplementary Table 1. 660 

The gene body ratio was calculated as a quality control metric to assess 5′ 661 
enrichment in capped RNA sequencing experiments. Analyses were 662 
restricted to highly expressed genes, defined as the top 10% ranked by PRO-663 
cap signal within the proximal region (1 kb upstream to 100 bp downstream 664 
of the gene TSS). For each gene, the ratio was computed as the normalized 665 
signal in the gene body (500 bp downstream of the TSS to 500 bp upstream 666 
of the transcription termination site) divided by the sum of the normalized 667 
signals in both the gene body and TSS (0-500 bp downstream of the gene 668 
TSS) regions, with normalization to the total length of each region. This 669 
measure reflects the extent to which capped reads are concentrated at TSS 670 

regions in high-quality data. One sample with a gene body ratio ≥ 0.025 was 671 

excluded from downstream analyses. 672 
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Quantification of transcription initiation. We counted reads whose 5’ 673 
ends aligned within the boundaries of individual elements in each sample. 674 
The resulting count matrix was normalized using the median of ratios method 675 
in DESeq250 to account for differences in library size and RNA compositional 676 
bias. We then applied variance stabilizing transformation to mitigate the 677 
mean-variance dependency, as recommended by DESeq2, for downstream 678 
analyses including PCA and clustering. 679 

Calculate specificity scores. The specificity scores were calculated 680 
following an approach similar to that previously described2,51. All samples 681 
from Fig. 2a were included, and  was defined as the average normalized 682 
expression of an element  across samples of the same tissue type . We first 683 

converted  to probabilities . The entropy of a given 684 

element was then computed as . To constrain the 685 
specificity score within the range of 0 to 1 (where 0 indicates ubiquitous 686 
expression and 1 represents exclusively specific expression), we defined 687 

, with N denoting the number of tissue types. 688 

Get tissue-specific and non-tissue-specific elements. We computed a t-689 
statistic for the specific expression of each divergent distal or proximal 690 
element in tissue types with at least three samples, as highlighted in Fig. 2a, 691 
following the procedure described in Finucane et al52. Briefly, a design matrix 692 
X was constructed with an indicator column denoting sample membership in 693 
the given tissue type (1 for yes, -1 for no) and an intercept term. The outcome 694 
Y was the normalized expression level of a given element across samples. 695 
We fit the model via ordinary least squares and calculated the t-statistic for 696 
the membership variable. The top 5% of elements from the union set, ranked 697 
by their t-statistic, were defined as the specifically expressed set for each 698 
tissue type. Non-tissue-specific elements were defined by the following 699 
criteria: (1) distal elements with a specificity score < 0.1 and proximal 700 
elements with a specificity score < 0.02 were included, resulting in a number 701 
of elements similar to that of the tissue-specific set for each tissue type; (2) 702 
elements belonging to any tissue-specific set were excluded. 703 
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Time series clustering of dynamically transcribed TREs during 704 
pancreatic lineage differentiation. We took the union set of PRO-cap 705 
elements across four timepoints (ESC, ESC-derived endodermal cells, 706 
pancreatic progenitor cells, and insulin-producing beta-like cells) to generate 707 
a count matrix. DESeq2 was used to identify elements with differential PRO-708 
cap signals between any pair of timepoints, with an FDR threshold of 0.01. 709 
Dirichlet process-Gaussian process (DP-GP) time-series clustering53 was 710 
applied to categorize the dynamically transcribed elements into distinct 711 
trajectories over time. We followed a similar two-stage strategy described in 712 
Kim et al54, except that replicate reproducibility was not required due to the 713 
absence of biological replicates in our dataset. First, we subsampled the 714 
expression data (n=5,000 for computational efficiency, as the algorithm was 715 
originally designed for thousands of genes) and applied the DP-GP algorithm 716 
with default parameters to generate the initial set of time series clusters. The 717 
cluster set was further filtered by excluding (1) clusters with fewer than 2% 718 
of dynamically transcribed elements and (2) non-dynamic trajectories whose 719 
multivariate Gaussian process did not reject the null hypothesis of no change 720 
over time. In the second stage, each dynamically transcribed element was 721 
assigned to a cluster if it fell within the 95% multivariate confidence interval 722 
of the trajectory. If multiple clusters matched, the element was assigned to 723 
the one with the smallest Euclidean distance from the mean trajectory. 724 
Elements without a matching cluster were discarded. To validate the 725 
biological relevance of these clusters, we assessed whether their target 726 
genes were enriched for expected pathways. The final set of elements was 727 
linked to the nearest target genes expressed (>1 TPM) at any point during 728 
the time course. Pathway enrichment analysis55 for each cluster was 729 
performed using the Canonical Pathways gene sets derived from the 730 
Reactome pathway database56 (c2.cp.reactome.v2023.2) in the Human 731 
Molecular Signatures Database (MSigDB)57. 732 

Partition heritability using S-LDSC. A total of 176 GWAS summary 733 
statistics were obtained from the curated collection of the Alkes Price lab 734 
(https://console.cloud.google.com/storage/browser/broad-alkesgroup-735 
public-requester-pays/LDSCORE/all_sumstats/). To capture both tissue-736 
specific and non-tissue-specific effects, we used the elements defined in the 737 
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“Get tissue-specific and non-tissue-specific elements” section. For analyses 738 
of immune-related phenotypes across blood cell types, all divergent distal 739 
elements identified in each blood sample were included. We then further 740 
extended these elements by ±1kb from the peak center to capture putatively 741 
functional variants in the flanking regions. To compute annotation-specific 742 
LD scores with a 1 cM window, we used the 1000 Genome Phase 3 data of 743 
European ancestry as the reference panel. To identify critical tissue types for 744 
a given phenotype, we ran S-LDSC with the “--h2-cts” flag to partition the 745 
heritability using our TRE annotations, conditional on the baseline model 746 
v1.2 as recommended by the LDSC developers 747 
(“LDSCORE/readme_baseline_versions”). The reference panel and 748 
baseline model were downloaded from LDSCORE/GRCh38/.  749 

Luciferase assay for evaluating GWAS variant effects on enhancer 750 
activity. In the section “Tissue-specific effects of disease- and trait-751 
associated variants”, we assessed the effect of the UC-associated variant 752 
rs6426833 on enhancer activity using a dual-luciferase reporter assay. 753 
Elements (chr1:19844867-19845867) containing either the reference or 754 
alternative alleles were cloned following previously described protocols3. 755 
Primers were designed using our in-house web tool58, incorporating attB1′ 756 
(forward) and attB2′ (reverse) 5′ overhangs (Supplementary Table 4). K562 757 
genomic DNA (E493; Promega Corp.) served as the template for PCR 758 
amplification using Phusion High-Fidelity (M0530; New England Biolabs) and 759 
PrimeSTAR GXL (R050A; Takara Bio Inc.) DNA polymerases. Amplicons 760 
were inserted into pDONR223 via Gateway BP cloning, sequence verified, 761 
propagated in spectinomycin-supplemented lysogeny broth (LB), and 762 
purified with E.Z.N.A. Plasmid DNA Mini Kit II (D6904; Omega Bio-tek, Inc.). 763 
Verified elements were transferred to pDEST-hSTARR-luc-pMYC via 764 
Gateway LR cloning, propagated in ampicillin-supplemented LB, and 765 
extracted using E.Z.N.A. Endo-Free Plasmid DNA Midi Kit (D6915; Omega 766 
Bio-tek, Inc.).  767 

HCT116 (CCL-247; ATCC) cells were cultured in McCoy's 5A Medium (30-768 
2007; ATCC) supplemented with 10% FBS (30-2020; ATCC) at 37°C with 769 
5% CO2. Caco-2 (HTB-37; ATCC) cells were cultured in EMEM (30-2003; 770 
ATCC) supplemented with 20% FBS (30-2020; ATCC) under the same 771 
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conditions. Vectors were transfected into HCT116 and Caco-2 cells using 772 
Lipofectamine 3000 (L3000001; Invitrogen), with 0.5 x 106 cells receiving 1 773 
μg of pDEST-hSTARR-luc-pMYC and 10 ng of pGL4.75 (E6931; Promega 774 
Corp.). After 24h of incubation, cells were dissociated with 0.25% Trypsin-775 
EDTA (25200056; Gibco) for the dual-luciferase reporter assay. 776 
Luminescence was measured using the Dual-Glo Luciferase Assay System 777 
(E2920; Promega Corp.) on an Infinite M1000 microplate reader (30034301; 778 
Tecan Group Ltd.) following the manufacturer’s instructions. Cells 779 
transfected with only pDEST-hSTARR-luc-pMYC or only pGL4.75 were used 780 
as background controls for firefly and Renilla luciferase activities, 781 
respectively. 782 

eQTL enrichment using TORUS. eQTL summary statistics were obtained 783 
from 28 GTEx v8 tissue types matching those in our PRO-cap dataset 784 
(https://console.cloud.google.com/storage/browser/gtex-785 
resources/GTEx_Analysis_v8_QTLs/GTEx_Analysis_v8_EUR_eQTL_all_a786 
ssociations). We applied TORUS to estimate functional enrichment for each 787 
annotation described in the “Partition heritability using S-LDSC” section. The 788 
tool outputs 95% confidence intervals for the log enrichment parameters, 789 
from which p-values are derived under the assumption of asymptotic 790 
normality59. 791 

Fine-mapped GWAS and eQTL variants. Both fine-mapped eQTL variants 792 
for GTEx tissues and GWAS variants for UK Biobank traits were obtained 793 
from https://www.finucanelab.org/data/. In this dataset, fine-mapping was 794 
performed using FINEMAP60 and SUSIE61. Variants included in the primary 795 
release were selected as follows: for GWAS, those within the 95% CS or with 796 
PIP > 0.001; for eQTL, those within the 95% CS or with PIP > 0.0001. We 797 
analyzed data from both fine-mapping approaches and observed consistent 798 
trends. For clarity and conciseness, only the FINEMAP results are presented 799 
in the manuscript. 800 

Motifs contributing to transcription versus accessibility. The 801 
ChromBPNet model trained on ESC ATAC-seq data (GSE267154) and 802 
related processed outputs, including contribution scores and TF-MoDISco 803 
results, were downloaded from Synapse (syn59449898). The ProCapNet 804 
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model was trained on ESC PRO-cap data with default parameters. 805 
Contribution scores were calculated using DeepSHAP62 following the 806 
procedure described by Cochran et al10. TF-MoDISco was applied to identify 807 
recurring sequence patterns, and TOMTOM63 was used to annotate the top-808 
matching TF motifs from the JASPAR database64. For both models, we 809 
retained motif patterns supported by at least 200 seqlets from TF-MoDISco 810 
and filtered out motifs that were either simple GC or AT repeats or could not 811 
be reliably matched to known motifs.  812 

To compare motif content across categories (motifs contributing to 813 
accessibility in ATAC-seq peaks with and without overlapping PRO-cap 814 
peaks, and motifs contributing to transcription in PRO-cap peaks), we 815 
employed the Fi-NeMo tool (https://github.com/austintwang/finemo_gpu; 816 
MIT License) to identify motif instances in ATAC-seq and PRO-cap peaks 817 
based on contribution scores for the count task from the respective models, 818 
with default parameters. Fi-NeMo was run separately using the unique TF-819 
MoDISco contribution weight matrices (CWMs) originally identified for each 820 
pattern from both the ChromBPNet and ProCapNet models. For downstream 821 
analyses, motif instances attributed to a given motif were those Fi-NeMo 822 
instances mapped to the original TF-MoDISco patterns identified by the 823 
corresponding model. For motifs lacking an original TF-MoDISco pattern in 824 
one model, the Fi-NeMo instances mapped to the CWMs from the other 825 
model were used. This approach ensured that motif instances were assigned 826 
based on the exact motif patterns learned by each model whenever 827 
available, while allowing for matches to motifs not detected by TF-MoDISco 828 
in one model but present in the other.  829 

To directly evaluate contributions to accessibility and transcription for 830 
individual motif instances, we recalculated contribution scores for the count 831 
task of the ChromBPNet model on PRO-cap peaks using the same input 832 
regions as ProCapNet. Motif hits were then called from these recalculated 833 
scores using Fi-NeMo. For motif instances located within PRO-cap peaks 834 
overlapping ATAC-seq peaks, we summed the contribution scores from both 835 
ChromBPNet and ProCapNet models and computed the Pearson correlation 836 
across instances for each motif type. 837 
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Predicting variant effects on nascent transcription using ProCapNet 838 
models. To evaluate the context-specific regulatory effects of fine-mapped 839 
variants, we first trained ProCapNet models on PRO-cap data from different 840 
tissue types, using default parameters except with “in_window” set to 1,000 841 
and “out_window” set to 500. We identified motif patterns for both count and 842 
profile tasks of each model using TF-MoDISco and called hits with Fi-NeMo, 843 
following the same procedure described in the “Motifs contributing to 844 
transcription versus accessibility” section. To score variant effects across 845 
diverse contexts (Fig. 4), we applied these models to a 1-kb input sequence 846 
centered at candidate elements containing either the reference or alternate 847 
allele. Variant effects were quantified as the log2 fold change in total counts 848 
between the alternate and reference alleles.  849 

Principal component analysis on embeddings of ProCapNet models. 850 
Model embeddings were defined as described in Cochran et al10, i.e., the 851 
output of the global average pooling layer within the count task head. We 852 
generated embeddings for all PRO-cap peaks from each sample using the 853 
corresponding model and performed PCA on the resulting embeddings. 854 
Different TRE categories (distal vs. proximal, unidirectional vs. divergent, 855 
and P-P vs. B-B) were then projected into the PCA space. 856 

Peak shape classification. We first combined reads across samples of the 857 
same tissue type. Only divergent elements that met the following criteria 858 
were included: (1) at least 50 reads on each strand; (2) called by PINTS in 859 
at least one sample. To calculate the shape index (SI) for a given strand, we 860 

applied the formula described in Hoskins et al.30,   , where  is 861 
the probability of observing a read at base position  within the element, and 862 

 is the set of base positions that have at least one read. Peaks on a given 863 
strand with an SI > -1.5 were classified as “peaked” (P); all others were 864 
classified as “broad” (B). 865 

Promoter-enhancer (P-E) connections. We obtained P-E connections 866 
(E2G models) for each tissue type from the ENCODE portal. Distal PRO-cap 867 
elements were mapped to tested elements in the E2G “element gene links” 868 
files (1-bp overlap; if multiple elements overlap, the one with the largest 869 
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overlap is selected; elements with zero overlap are discarded). Proximal 870 
PRO-cap elements were mapped to tested elements in the E2G files with the 871 
“isSelfPromoter” column set to True and assigned the corresponding gene 872 
symbol. The number of target genes for a given distal element and the 873 
number of enhancers regulating a given gene are calculated based on the 874 
“thresholded element gene links” files. 875 

Motif enrichment analysis. For the leukemia and lymphoma panel, we ran 876 
HOMER65 for de novo motif discovery in each TRE module, using the union 877 
set of divergent distal elements from this panel as the background. The top 878 
motifs identified in each module were compiled into a custom set of known 879 
motifs to calculate enrichment in all modules. For the T1D and metastatic 880 
panels, we performed motif enrichment using HOMER with the default motif 881 
database. 882 
 883 
CRISPRi screening of TRE modules at the MYC locus. B-ALL cell lines 884 
REH, SEM, and NALM-6 were co-transduced with virus generated from 885 
lentivectors TRE-KRAB(ZNF10)-dCas9-IRESGFP (RRID: Addgene_85556) 886 
and EF1a_TetOn3G (Clontech), and were serially flow sorted to derive 887 
populations that were GFP-negative in the absence of doxycycline and GFP-888 
positive after induction with 500 ng/ml doxycycline. For SEM, a polyclonal 889 
population of inducible KRAB-dCas9+ cells was used, while for REH and 890 
NALM-6, single cell clones were derived by limiting dilution and clones with 891 
uniform transgene inducibility were validated and used for screening. Gene 892 
knockdown efficiency was validated by qRT-PCR after transduction with 893 
sgRNAs targeting the ENO1 promoter or non-genome-targeting control in 894 
the presence and absence of doxycycline. Inducible KRAB-dCas9+ cell 895 
populations were validated for cell line identity by STR profiling prior to the 896 
CRISPRi screen. CRISPRi screens to determine fitness effects of MYC locus 897 
TRE modules were performed in B-ALL cell lines via the same sgRNA library 898 
and protocol previously described for K56266 and KARPAS-42239. CRISPRi 899 
screening results from SU-DHL-5 was previously published39, and used a 900 
different sgRNA library targeting nucleosome-free regions of MYC locus 901 
elements with significant acetylation in mature B-cell lymphoma cell lines. 902 
 903 
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Pairwise comparison of metastatic cancer samples and normal tissue 904 
samples. We included 93 normal tissues samples from 15 tissue types 905 
(highlighted in Fig. 2a), and 23 metastatic cancer samples. PCA was 906 
performed using normalized PRO-cap signals at divergent distal and 907 
proximal elements identified in these samples. Principal components 908 
explaining 90% of the variance were extracted to calculate Pearson 909 
correlations between metastatic cancer samples and normal tissue samples 910 
from the corresponding primary site, metastatic site, and other sites. 911 

Predicting the primary site of metastatic tumor samples. The training 912 
dataset consists of the 93 normal samples from 15 tissue types (Fig. 2a). 913 
Tissue-specific elements, obtained as described in the “Get tissue-specific 914 
and non-tissue-specific elements” section, were combined into a union set 915 
of features, excluding those found in multiple tissues. A linear support vector 916 
classifier was trained on this feature set with default hyperparameters and 917 
evaluated on metastatic samples with known primary sites.  918 

Schematics. All schematics in Figs. 1, 2, and 6 were created using 919 

BioRender, with the appropriate publication licenses. 920 

Data availability 921 

The PRO-cap datasets generated in this study will be deposited in the 922 
ENCODE portal and publicly available upon publication. 923 

Code availability 924 

All code used in this study has been deposited at https://github.com/haiyuan-925 
yu-lab/TRE_landscape. 926 
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Figure 1 | Comprehensive mapping of active transcriptional regulatory 1133 
elements across human physiology and pathology 1134 
(a) Schematic depicting the diversity of samples profiled, spanning tissues 1135 
and cell types across all major human organ systems, pluripotent stem cells 1136 
and their differentiated lineages, and a variety of disease states. 1137 
(b) Schematic of PRO-cap assay to detect divergent and unidirectional 1138 
TREs.  1139 
(c) Donut plot showing the total number of TREs identified, classified by 1140 
transcriptional directionality (divergent or unidirectional), distance to 1141 
annotated gene TSSs (proximal or distal), and genomic context (intergenic 1142 
or intragenic). 1143 
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Figure 2 | Functional and evolutionary architecture of tissue-specific 1168 
transcriptional regulation across the human body 1169 
(a) Dendrogram illustrating hierarchical clustering of tissue samples based 1170 
on normalized PRO-cap expression levels of divergent distal elements. Each 1171 
leaf corresponds to a sample, while subtrees primarily representing a single 1172 
tissue type with at least three samples are highlighted.  1173 
(b) Upper panel: Representative browsershots of PRO-cap signals from 15 1174 
tissue types highlighted in (a) across three genomic loci. Each track 1175 
represents average RPM-normalized PRO-cap signals across samples of 1176 
the same tissue type. Lower panel: Representative browsershots of PRO-1177 
cap signals from three segments of the large intestine (transverse colon, 1178 
descending colon, and rectum) across two genomic loci.  1179 
(c) Metaplots of sequence age (million years ago), phyloP, and CDTS across 1180 
distal and proximal divergent elements grouped by specificity score 1181 
quantiles, with Q1 indicating the most ubiquitously expressed and Q4 the 1182 
least. Distances are shown as ±0.5 kb from the element center.  1183 
(d) Heatmap depicting PRO-cap signals of tissue-specific divergent distal 1184 
elements (columns) across samples (rows) highlighted in (a). Colors 1185 
represent the Z-score of each element across the samples.  1186 
(e) Heatmap showing average Z-scores of PRO-cap signals at divergent 1187 
elements that overlap with elements tested in the VISTA database (either 1188 
displaying positive activity in relevant tissue types or negative in all tests).  1189 
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Figure 3 | Tissue-specific effects of disease- and trait-associated 1203 
variants 1204 
(a) Heatmap showing the significance of heritability enrichment for 1205 
representative human diseases and complex traits across divergent distal 1206 
tissue-specific TRE annotations. Asterisks (*) denote FDR < 0.1 after 1207 
Benjamini-Hochberg correction. The full panel is shown in Supplementary 1208 
Fig. 3. IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: 1209 
Ulcerative colitis.   1210 
(b) Genome browser view of PRO-cap signal at a distal element across 1211 
different gastrointestinal segments, harboring a fine-mapped GWAS variant 1212 
(rs6426833) that alters an AP-1 motif. 1213 
(c) Luciferase reporter assay showing enhancer activity for the risk allele (A) 1214 
compared to the reference allele (G) in Caco-2 and HCT116 cells.  1215 
(d) The significance of heritability enrichment for T1D (upper panel) and T2D 1216 
(lower panel) across healthy immune cell types and pancreas, as well as T 1217 
cells isolated from T1D patients. Each point represents an individual sample. 1218 
The dashed line denotes an FDR threshold of 0.1.  1219 
(e) Volcano plot showing differential PRO-cap signal at TREs of T cells from 1220 
T1D patients versus non-diseased donors, with each point representing an 1221 
element. TREs with significantly increased (yellow) or decreased (green) 1222 
PRO-cap expression in T1D are highlighted.   1223 
(f) Browser shot of average PRO-cap signal tracks at the IL2RB intronic 1224 
enhancer locus in T cells from non-diseased donors and T1D patients. Fine-1225 
mapped T1D-associated variants located within this locus are marked by 1226 
dashed lines.  1227 
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Figure 4 | Tissue-specific modeling of nascent transcription 1238 
(a) Fraction of PRO-cap peaks containing TF motifs identified by ProCapNet 1239 
as contributing to transcriptional strength (count task) and/or transcription 1240 
start site positioning (profile task) across multiple tissue types. 1241 
(b) Fraction of fine-mapped GWAS variants for albumin measurement 1242 
(above a given PIP threshold) overlapping divergent distal elements from 1243 
liver-specific and other TRE categories.  1244 
(c) The first track shows PIP values for two GWAS variants in a credible set 1245 
associated with albumin measurement. The second track presents the PRO-1246 
cap signal observed in the liver sample (EN55). The final track displays the 1247 
1-kb input regions centered on each PRO-cap element, with different 1248 
variants used for prediction. 1249 
(d) Predicted impact of variants rs17712208 and rs79687284 on 1250 
transcription levels of elements e1 and e2, measured by log2 fold change 1251 
between alternative and reference alleles in liver and other tissue models.  1252 
(e) Predicted transcription profiles and contribution scores for element e1 1253 
with either the reference or alternative allele of rs17712208 (red dashed line) 1254 
using the liver-trained model. 1255 
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Figure 5 | Functional implications of transcriptional peak shape in gene 1273 
regulation 1274 
(a) Representative motifs showing broad (CREB) and focused (TATA-box, 1275 
SRF, and MEF2) effects. Left panel: contribution weight matrix from the 1276 
count task of TF-MoDISco output. Middle panel: average observed PRO-cap 1277 
profiles centered at motif instances, accounting for motif orientation. Right 1278 
panel: average predicted profiles scaled by total counts before and after in 1279 
silico motif deletion, centered at motif instances with motif orientation 1280 
considered. One illustrative ProCapNet model is shown per motif: CREB 1281 
(EN55), TATA (BCT5), SRF (GT22), and MEF2 (EN23). 1282 
(b) Representative PRO-cap signal tracks from liver for divergent distal 1283 
elements with P-P, P-B, and B-B peak shapes. 1284 
(c) Boxplot showing percent distribution of TRE types (P-P, P-B, B-B) across 1285 
tissues. Each point represents one tissue type. 1286 
(d) Boxplot showing tissue specificity scores for divergent distal and proximal 1287 
elements across the three peak shape categories. Each point represents the 1288 
median score for a given tissue type. 1289 
(e) Left panel: Violin plots showing the number of predicted target genes for 1290 
distal elements with different peak shapes. Each datapoint represents the 1291 
mean value for a given tissue type. Right panel: Violin plots showing the 1292 
number of enhancers linked to genes with proximal elements of different 1293 
peak shapes. Each point reflects the mean value for a given tissue type. 1294 
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Figure 6 | Transcriptional regulatory element signatures delineate 1308 
tumor identity and organ-specific metastatic trajectories  1309 
(a) Hierarchically clustered heatmap of CML, B-ALL, and GCB-DLBCL 1310 
subtypes based on the expression patterns of divergent distal elements. The 1311 
heatmap displays average Z-scores of elements within each TRE module 1312 
across samples. Key pathogenic mechanisms (e.g., fusion proteins and 1313 
overactivation of the MYC 3′ enhancer) are labeled alongside the 1314 
corresponding cell line names. An illustration of hematopoetic developmental 1315 
stages is included, with colors corresponding to the putative cellular origin of 1316 
CML (equivalent to progenitors), B-ALL, and GCB-DLBCL. 1317 
(b) Genome browser tracks of PRO-cap signal and CRISPRi scores for three 1318 
representative 2.5-kb loci from TRE modules M1, M2, and M6 across four 1319 
cell lines. 1320 
(c) Top: Schematic overview of anatomical sites profiled, including 1321 
metastatic tumor biopsies and non-neoplastic samples from their 1322 
corresponding primary and metastatic sites, as well as other unrelated 1323 
tissues. Bottom: Pairwise comparison of divergent distal TRE expression 1324 
profiles between metastatic tumors and non-neoplastic tissues from the 1325 
corresponding primary, metastatic, and unrelated sites. 1326 
(d) Top-1 prediction of the primary site for metastatic tumors using a linear 1327 
support vector machine classifier.  1328 
(e) TF motif enrichment in differentially expressed TREs between lung and 1329 
brain metastases from colorectal cancer.  1330 
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Extended Data Fig. 1 | Systematic benchmarking of PRO-cap elements 1343 
against other annotations 1344 
(a) Violin plots showing the proportion of PRO-cap elements overlapping 1345 
ATAC-seq, DNase-seq, H3K27ac ChIP-seq, cCREs, and CAGE-seq peaks, 1346 
stratified by TRE category. Each datapoint represents the percent overlap 1347 
between two datasets for a given matched tissue type. 1348 
(b) Violin plots showing the proportion of distal and proximal elements 1349 
annotated by chromatin accessibility, H3K27ac ChIP-seq, cCREs, or CAGE-1350 
seq that overlap with PRO-cap elements. Each datapoint represents the 1351 
percent overlap between two datasets for a given matched tissue type. 1352 
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Extended Data Fig. 2 | Differential motif contributions to nascent 1377 
transcription and chromatin accessibility 1378 
(a) The metaplot of ATAC-seq profiles for open chromatin regions, with and 1379 
without PRO-cap signals, i.e., PRO-cap (+) and PRO-cap (-). Distances are 1380 
shown as ±0.5 kb from the element center.  1381 
(b) Density plot of log-transformed observed and predicted counts at PRO-1382 
cap peaks from held-out test chromosomes across 7-fold cross-validation, 1383 
based on the model trained on ESCs. 1384 
(c) Distribution of Jensen-Shannon distances (lower values indicate greater 1385 
similarity) between observed and predicted base-resolution profiles at PRO-1386 
cap peaks from held-out test chromosomes across 7-fold cross-validation 1387 
(red), based on the model trained on ESCs. For comparison, distances 1388 
between observed profiles from two biological replicates of ESCs are shown 1389 
in green (upper bound), and distances between observed profiles and 1390 
profiles averaged over all peaks are shown in grey (baseline). 1391 
(d) Left panel: Fraction of PRO-cap peaks with a given motif contributing to 1392 
transcription (ProCapNet model). Right panel: Fraction of ATAC-seq peaks 1393 
from PRO-cap (+) and PRO-cap (-) groups harboring a given motif 1394 
contributing to accessibility (ChromBPNet model).  1395 
(e) Scatterplots showing three categories of motifs with varying contributions 1396 
(count task) to transcription (ProCapNet model) and accessibility 1397 
(ChromBPNet model) in PRO-cap (+) regions. Each data point represents 1398 
the summed contribution score for a motif instance identified by Fi-NeMo. 1399 
The first and last rows highlight example motifs that predominantly contribute 1400 
to transcription and accessibility, respectively. The middle row shows motifs 1401 
whose contribution scores are well correlated between the two models. 1402 
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Extended Data Fig. 3 | Tissue-specific regulatory element usage and 1411 
evolutionary conservation patterns 1412 
(a) Distribution of specificity scores for divergent elements. A specificity 1413 
score of 0 indicates ubiquitous activity across all tissues, while a score of 1 1414 
denotes expression exclusive to a single tissue type. 1415 
(b) Summary of TRE specificity in each tissue type. Top panel: Number of 1416 
deduplicated uniquely mapped reads (in millions) per sample. Second panel: 1417 
Number of detected divergent distal elements (in thousands) per sample. 1418 
Third panel: Expression specificity of divergent distal elements, with colors 1419 
indicating the fraction of elements per tissue (columns) falling into each of 10 1420 
specificity bins (rows; e.g., 0-0.1, 0.1-0.2, etc.). Fourth and fifth panels: Same 1421 
as second and third panels, respectively, but for divergent proximal 1422 
elements. The number of profiled samples is indicated alongside each tissue 1423 
type. 1424 
(c) Heatmap depicting PRO-cap signals of tissue-specific divergent proximal 1425 
elements (columns) across samples (rows) highlighted in Fig. 2a. Colors 1426 
represent the Z-score of each element across the samples.  1427 
(d) Metaplots of sequence age (million years ago), phyloP, and CDTS across 1428 
tissue-specific divergent elements. Distances are shown as ±0.5 kb from the 1429 
element center.  1430 
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Extended Data Fig. 4 | Lineage-specific transcriptional regulatory 1445 
element usage during pluripotent cell differentiation 1446 
(a) Dendrogram showing hierarchical clustering of iPSCs/ESCs and their 1447 
differentiated lineages along with normal tissues based on normalized PRO-1448 
cap expression levels of divergent distal elements. 1449 
(b) Heatmap of PRO-cap signals (relative to ESC) for divergent distal 1450 
elements differentially expressed during pancreatic lineage differentiation, 1451 
grouped by distinct transcriptional trajectories. Functional enrichment of 1452 
predicted target genes is shown alongside each trajectory. 1453 
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Extended Data Fig. 5 | Heritability enrichment of immune-related 1479 
phenotypes in diverse blood cell types  1480 
(a) The significance of heritability enrichment for blood cell count traits across 1481 
major immune cell types from healthy individuals. 1482 
(b) Same as (a) but for IBD, UC, and CD. 1483 
(c) Same as (a) but for T1D and T2D. 1484 
Each point represents an individual sample. The dashed line denotes an 1485 
FDR threshold of 0.1.  1486 
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Extended Data Fig. 6 | Functional characterization of differentially 1512 
expressed transcriptional regulatory elements in T1D patient-derived T 1513 
cells. 1514 
(a) Enrichment of TF binding motifs in differentially expressed TREs between 1515 
T1D patient- and non-diseased donor-derived T cells. Top 10 significantly 1516 
enriched motifs in upregulated and downregulated TREs are shown (FDR < 1517 
0.05). Sequence logos with their corresponding TF identity match (TF name 1518 
and DNA-binding domain) and p-value are shown.  1519 
(b) Pathway enrichment analysis of genes linked to differentially expressed 1520 
TREs. Dot size indicates the number of genes per pathway, and dot color 1521 
represents the gene overlap ratio. 1522 
(c) Browser shot of PRO-cap signal tracks at the IL2RB intronic enhancer 1523 
locus in T cells from individual T1D patients and in different immune cell 1524 
types from each non-diseased donor. Same locus as shown in Fig. 3f. 1525 
Dashed lines indicate fine-mapped T1D-associated variants located within 1526 
this region.  1527 
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Extended Data Fig. 7 | eQTL enrichment across transcriptional 1546 
regulatory element annotations 1547 
(a) Heatmap showing the significance of eQTL enrichment across divergent 1548 
distal tissue-specific and non-tissue-specific TRE annotations. Asterisks (*) 1549 
denote FDR < 0.05 after Benjamini-Hochberg correction. 1550 
(b) Same as (a), but for divergent proximal elements.  1551 
(c) Fraction of fine-mapped eQTL variants (above a given PIP threshold) 1552 
overlapping tissue-specific and non-tissue-specific divergent distal 1553 
elements. Lines show the average across related GTEx tissues; subplot titles 1554 
indicate TRE categories. Traces are shown for thresholds with ≥5 variants. 1555 
Shaded areas denote standard error. 1556 
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Extended Data Fig. 8 | Genome-wide distribution of pause distances in 1579 
transcriptional regulatory elements following depletion of different 1580 
factors 1581 
(a) Genome-wide distribution of pause distances for distal elements before 1582 
and after acute depletion of the indicated factors using auxin-inducible 1583 
degron systems. 1584 
(b) Same as (a), but for proximal elements. 1585 
(c) Representative 5’ and 3’ PRO-cap signal tracks (merged across 1586 
replicates) of an element before and after NELF-C degradation in DLD-1 1587 
cells. 1588 
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Extended Data Fig. 9 | Subtype-specific transcriptional landscape of 1613 
leukemia and lymphoma 1614 
(a) Heatmap showing enrichment patterns of top de novo TF motifs in each 1615 
subtype-specific TRE module from Fig. 6a. 1616 
(b) Active rate of divergent distal elements in TRE module M2 across 1617 
different cell lines based on CRISPRi tiling screen at the MYC locus. 1618 
(c) Genome browser tracks of PRO-cap signal and CRISPRi scores for distal 1619 
elements in the MYC locus across different cell lines, with each example 1620 
covering a 2.5-kb region on chromosome 8. Grey boxes cover regions that 1621 
were not targeted by the sgRNA library used for SU-DHL-5, which was 1622 
different from the tiling sgRNA library used for other cell lines. NFR: 1623 
nucleosome-free region.  1624 
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Extended Data Fig. 10 | Site-specific regulatory rewiring in lung and 1648 
brain metastases of colorectal cancer 1649 
(a) Hierarchical clustering of divergent distal TREs in metastatic biopsies 1650 
from patients with colorectal cancer and related non-neoplastic tissues. 1651 
(b) Heatmap of differentially expressed divergent distal TREs between lung 1652 
and brain metastases. Z-scores of PRO-cap signals were calculated across 1653 
metastatic samples and related non-neoplastic tissues.  1654 
(c) Genome browser tracks of PRO-cap signals at the promoter regions of 1655 
ETS1 and HNF4A in lung and brain metastases from colorectal cancer 1656 
alongside related non-neoplastic tissues.  1657 
(d) Pathway enrichment analysis of genes linked to differentially expressed 1658 
TREs in lung or brain metastases from colorectal cancer, respectively. Gene 1659 
ratio represents the fraction of genes in each pathway that overlap with the 1660 
input gene set. 1661 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2025. ; https://doi.org/10.1101/2025.09.24.676871doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.24.676871
http://creativecommons.org/licenses/by/4.0/

