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A multiscale functional map of somatic
mutations in cancer integrating protein
structure and network topology

Yingying Zhang 1,2,3,8, Alden K. Leung1,2,8, Jin Joo Kang1,2, Yu Sun 1,2,
Guanxi Wu 4, Le Li1,2, Jiayang Sun1, Lily Cheng5, Tian Qiu6, Junke Zhang1,2,
Shayne D. Wierbowski 1,2, Shagun Gupta 1,2, James G. Booth1,7 &
Haiyuan Yu 1,2

A major goal of cancer biology is to understand the mechanisms driven by
somatically acquired mutations. Two distinct methodologies—one analyzing
mutation clustering within protein sequences and 3D structures, the other
leveraging protein-protein interaction network topology—offer com-
plementary strengths. We present NetFlow3D, a unified, end-to-end 3D
structurally-informed protein interaction network propagation framework
that maps the multiscale mechanistic effects of mutations. Built upon the
Human Protein Structurome, which incorporates the 3D structures of every
protein and the binding interfaces of all known protein interactions, Net-
Flow3D integrates atomic, residue, protein and network-level information: It
clusters mutations on 3D protein structures to identify driver mutations and
propagates their impacts anisotropically across the protein interaction net-
work, guided by the involved interaction interfaces, to reveal systems-level
impacts. Applied to 33 cancer types, NetFlow3D identifies 2 times more 3D
clusters and incorporates 8 times more proteins in significantly inter-
connected network modules compared to traditional methods.

Somatically acquired mutations are one of the major sources driving
tumorigenesis1. Computational approaches have been developed to
assign pathogenicity scores to given mutations, indicating their phe-
notypic effects on an organism2–8. Complementary to these approa-
ches, understanding the mechanisms driven by each mutation—from
altering genomic sequences to changing key amino acid residues to
dysregulating relevant cellular pathways—is key to developing effec-
tive therapeutic strategies. Efforts have been made to interpret the
effects of mutations at specific scales9–17. Some studies focus on the
molecular effects and look for spatial clustering of mutations within
critical regions of proteins9–15,18,19. Others focus on cancer pathways and

look for significantly mutated subnetworks of proteins16,17,20. Studies at
the molecular and pathway levels offer complementary insights into
the underlying mechanisms of cancer.

At the 3D protein structural level, the spatial clustering of muta-
tions on 3D protein structures can reveal functionally important pro-
tein regions and can thus assist in identifying cancer driver
mutations9–15,19. Given that the overwhelming majority of somatic
mutations in cancer are non-functional passengers21, 3D clustering
analysis narrows down potential driver mutations and thus sig-
nificantly boost the signal-to-noise ratio. However, previous 3D clus-
tering algorithms either limit their scope to the experimentally-
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determined structures9,11,12,15, or specifically focus on single
proteins10–12,14 or protein-protein interaction (PPI) interfaces22,23. No
approach yet fully examines the 3D structures of every single protein
as well as the binding interfaces of all known PPIs in humans, leaving
many spatial clusters yet to be identified. The bottleneck has been the
limited coverage of 3D structural information: only ~36% of single
proteins and ~6% of known PPIs in humans have experimentally-
determined structures24. Nonetheless, recent breakthroughs in deep
learning technologies for highly accurate 3D structure prediction,
covering both singleproteins25–29 andmulti-protein complexes30–34, are
rapidly filling these gaps.

At the PPI network level, variousmethods have been developed to
identify significantly mutated subnetworks by integrating genetic
mutation data with network topology16,17,35,36. These strategies have
revealed many key pathways and protein complexes in cancer. Fur-
thermore, sophisticated analyses can construct a hierarchy of altered
subnetworks20,37,38, offering a nuanced, multi-layered perspective on
the cancer-related biological processes across various subnetwork
levels.

The insights gained from 3D protein structural level and PPI net-
work level methodologies are largely non-overlapping, thereby offer-
ing complementary strengths. Integrating these methodologies is key
to comprehensively delineate cancer mechanisms. In this work, we
establish NetFlow3D, a unified framework that integrates methodolo-
gies across 3D structural and PPI network levels to systematically map
the multiscale functional effects of somatic mutations across atomic,
residue, protein and network scales. To enable this integration, we
compile the Human Protein Structurome, a comprehensive repository
encompassing the 3D structures of every single protein as well as the
binding interfaces of all known protein interactions in humans. Net-
Flow3D initially identifies potential driver mutations through 3D clus-
tering analysis applied to the Human Protein Structurome, and
exclusively propagates these clustering signals across the PPI network,
significantly enhancing the signal-to-noise ratio. It then accounts for
the fact that a protein often interacts with different partners via dis-
tinct 3D structural interfaces, and accordingly weights the impact of
3D clusters at a specific PPI interface on different interaction partners
differently. This end-to-end integration of protein structure and net-
work topology leads to the identification of a much greater number of
likely functionalmutations and amore extensive range and larger scale
of disease-associated network modules, which demonstrate mole-
cular, cellular, and clinical significance. The NetFlow3D tool39, the
Human Protein Structurome, and the results40 from applying Net-
Flow3D to TCGA pan-cancer data, can be accessed through our inter-
active web server (http://netflow3d.yulab.org/).

Results
NetFlow3D maps the functional effects of somatic mutations
across multiple scales
We compiled and processed a TCGA pan-cancer dataset of
1,038,899 somatic protein-altering mutations across 9,946 tumor
samples spanning 33 cancer types (Fig. 1a; Methods). Of these muta-
tions, 82% were expected to change only one or a few amino acid
residues in the encoded proteins (i.e.missensemutations and in-frame
indels), and are thus collectively referred to as in-frame mutations.
Without further biological contexts, it is particularly difficult to inter-
pret the varying downstream functional effects based on these subtle
changes to the protein sequences.

Mounting evidence has demonstrated the efficaciousness of
identifying functional in-framemutations by detecting spatial clusters
on 3D protein structures9–15,18,19. In order to achieve full-coverage spa-
tial mapping of mutations on 3D protein structures, we compiled a
comprehensive repository that contains the structures of all human
proteins as well as the binding interfaces of all known human PPIs and
available multi-protein complex structures, which we named “the

Human Protein Structurome” (Fig. 1b; Methods). Importantly, the 3D
structural data of 64% of canonical human proteins and 94% of known
human PPIs were generated by recent deep-learning approaches,
including AlphaFold225 and PIONEER24, which were not available to
previous 3D clustering algorithms.

The first part of NetFlow3D is a 3D clustering algorithm that
identifies spatial clusters of in-frame mutations throughout the entire
Human Protein Structurome (Fig. 1c; Methods). Our algorithm looks
for both 3D clusters within single proteins (intra-protein 3D clusters)
and 3D clusters spanning interacting proteins (inter-protein 3D clus-
ters). Unlike most existing 3D clustering algorithms, (i) our method
models the varying local backgroundmutation rate across the genome
by accounting for replication timing, mRNA expression level, HiC
chromatin compartment, local GC content, and local gene density, an
approach adapted from MutSigCV41 (Methods). This differs from the
commonpractice inmany 3D clustering algorithms that determine the
significance of 3D clusters by randomly shuffling mutations within the
same protein structure. (ii) Our method determines the physical con-
tact between every pair of amino acid residues by accounting for their
varying 3D distances across all available structures instead of solely
based on a single snapshot represented by one structure (Methods).

The second part of NetFlow3D employs a heat diffusion model
adapted from HotNet216 to propagate 3D clustering signals (“heat”)
through the PPI network (“diffusion”) (Fig. 1d; Methods). Importantly,
our method goes beyond traditional PPI network analyses by incor-
porating 3D structural information in two crucial aspects: (i) Net-
Flow3D assigns an initial heat score to each node (protein) based on
the 3Dclustering signals on that protein, unlike traditional PPI network
analyses that rely on gene mutation frequency or other gene-level
statistics, thereby significantly boosting the signal-to-noise ratio. (ii)
When NetFlow3D propagates heat from one node to its neighbors
(representing the impact of 3Dmutation clusters), it assigns additional
propagation weight to the edges (PPIs) that have 3Dmutation clusters
on their corresponding PPI interfaces (i.e., anisotropic) (Supplemen-
tary Fig. 1). This strategy is grounded in the “edgetic effect” of func-
tional missense mutations, indicating that mutations at the interface
are more likely to disrupt the corresponding PPI than non-interface
mutations. This effect has been observed in both germline42–44 and
somatic mutations (Supplementary Fig. 2; Supplementary Data 1).
NetFlow3D’s weighted propagation strategy differs from traditional
PPI network analyses that typically treat all edges connected to a given
node as equal. Subsequently, NetFlow3D identifies “interconnected
modules” within the network, i.e., subnetworks characterized by den-
sely interconnected 3D clusters. To be in the same module, two pro-
teins, u and v, should both have substantial 3D clustering signals that
significantly impact eachother. Thismethod is designed toprevent the
formation of “star graphs”, which are centered around well-studied
cancer proteins but include surrounding proteins with minimal 3D
clustering signals and biological relevance.

As a complement to the first and second parts that focus on in-
frame mutations, NetFlow3D also accounts for loss-of-function (LOF)
mutations. Thesemutations, which drastically alter protein sequences,
are generally less specific about where they occur within protein
structures to exert their effect. Therefore, NetFlow3D evaluates the
enrichment of LOF mutations scattered across the entire sequence of
each protein, and incorporates these protein-specific LOF enrichment
signals as additional initial heat scores into the heat diffusionmodel in
the second part (Fig. 1a and d; Methods).

Overall, NetFlow3D maps the functional effects of somatic
mutations acrossmultiple scales: fromatomic-resolution 3D clustering
of mutations, to perturbations of key proteins/PPIs, to the dysregula-
tion of network modules and cellular pathways. As a coherent and
unified framework, NetFlow3D integrates information across all these
levels, thereby reinforcing confidence in discoveries at each scale: For
example, 3D clustering of mutations across atomic and residue levels
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allows network propagation of only likely driver mutations and pin-
points their specific impacts on different interaction partners; While
network propagation and topological analysis further boost con-
fidence in those 3D mutation clusters that are significantly inter-
connected within the same module, and shed light on complex
biological processes underlying disease etiology.

Significant intra- and inter-protein 3D clusters throughout the
Human Protein Structurome
We applied the 3D clustering algorithm in NetFlow3D to the 849,690
somatic in-frame mutations in the TCGA pan-cancer dataset. This
analysis led to the identification of 7,634 significant intra-protein 3D
clusters and 6,810 significant inter-protein 3D clusters throughout the
Human Protein Structurome (Fig. 2a; Supplementary Data 2). Notably,
60% of intra-protein clusters and 50% of inter-protein clusters were
identified using 3D structural data from deep learning databases. For
example, within the 3D structure of PPP2R5B protein generated by

AlphaFold 2, we identified an intra-protein 3D cluster composed
exclusively of rarely mutated residues (i.e., mutated in no more than
two tumor samples) (Fig. 2b). These residues would not have been
identified through individual analysis. Impressively, 99.1% of residues
in our significant 3D clusters do not exhibit significant recurrent
mutations when analyzed individually (Supplementary Fig. 3a). How-
ever, these infrequently mutated residues demonstrate a significant
enrichment for catalytic residues (Supplementary Fig. 3b). The use of
AlphaFold 2-generated structures was crucial in identifying these
potentially functional, yet infrequently mutated residues in proteins
without experimentally-resolved structures. Moreover, single protein
structures alone (even if covering every human protein) are still not
enough for the comprehensive identification of all 3D clusters. This is
because many driver mutations accumulate at the binding interfaces
of cancer-related PPIs22,45,46. Only looking at individual proteins will
split inter-protein 3D clusters into smaller fragments on individual
proteins, making them harder to identify. This is demonstrated by the

Fig. 1 | Framework of mapping the multiscale functional effects of somatic
mutations. a PreprocessedTCGA (TheCancerGenomeAtlas) pan-cancermutation
dataset, consisting of in-frame and loss-of-function (LOF)mutations. bOverview of
the Human Protein Structurome, which incorporates three-dimensional (3D)
structures of 20,431 canonical isoforms (as shown in the figure) and 165,328 non-
canonical isoforms (not shown), as well as the binding interfaces for 146,137 known

protein-protein interactions (PPIs). c The first part of NetFlow3D, a 3D clustering
algorithm for identifying both intra- and inter-protein 3D clusters of in-frame
mutations. d The second part of NetFlow3D, a network propagation model for
identifying interconnected modules. All 3D protein structures in this figure were
visualized using PyMOL.
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fact that, among the identified residues within our significant inter-
protein 3D clusters, 55.8% would not have been identified if we only
searched for significant intra-protein 3D clusters. Such situations are
exemplified by an inter-protein cluster on the PPI interface between
RHOC and ARHGAP1 proteins, as revealed by PIONEER (Fig. 2c). These
results highlight the importance of knowing PPI interfaces, which are
mostly generated by our deep learning framework PIONEER, in iden-
tifying potential driver mutations. Overall, 91.6% of TCGA tumor
samples with somatic in-frame mutations have at least one mutation
incorporated by our significant 3D clusters, demonstrating the thor-
oughness of our 3D cluster identification.

We then evaluated the performance of NetFlow3D and compared
it with four state-of-the-art 3D clustering algorithms9–11,13 which repre-
sent major sources of 3D cluster identification (Methods). We applied
each algorithm to the same TCGA pan-cancer dataset, and compared
the 3D clusters identified by different algorithms. Considering that (i)
some algorithms only focus on intra-protein clusters10,11 while some
others identify both9,13, and (ii) some algorithms only use
experimentally-determined structures9,11 while some others also
include comparative protein structure models10,13, we therefore make
coherent comparisons by (i) assessing the intra- and inter-protein
clusters separately, and (ii) limiting the comparisons to the 3D clusters

Fig. 2 | Significant 3D clusters identified by NetFlow3D and performance eva-
luation. a Summary of intra- and inter-protein clusters identified by NetFlow3D.
b, c Examples of significant 3Dclusters identifiedusingdeep-learning-generated 3D
structural data. Significance is determined by adjusted p-values (<0.05), derived
from Bonferroni correction of raw p-values calculated using one-sided Poisson
tests (Methods). The 3D protein structures are visualized using Python NGLview
package. b An intra-protein cluster identified using AlphaFold 2-generated struc-
ture of PPP2R5B. Allmutations incorporated by this cluster are on the residueswith
“very high” or “confident” model confidence. c An inter-protein cluster identified
using PIONEER-generated interaction interface between RHOC and ARHGAP1. For
visualization purposes, a 3D structure of this protein complex is generated using
AlphaFold Multimer. d, e Performance comparison between NetFlow3D and state-

of-the-art 3D clustering algorithms. Performance curves are drawn for the top
1–500 genes, ranked by each algorithm based on the highest scoring 3D cluster on
each gene. Source data are provided as a Source Data file. d Intra-protein 3D
clustering results. e Inter-protein 3D clustering results. f Enrichmentwas calculated
as the ratio of the observed fraction of catalytic residues among the residues under
investigation over the fraction of catalytic residues on corresponding proteins
(expected fraction). The error bars indicate standard error, calculated using the
delta method. P values for each bar were calculated using two-sided Z-tests
(****P <0.0001). Residues in significant 3D clusters: n = 101,704; Other mutated
residues: n = 682,471. P-value for comparing the observed fraction of catalytic
residues between the two groups was calculated using a two-sided two-proportion
Z-test. Source data are provided as a Source Data file.
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identified on experimentally-resolved structures. Genes were ranked
by each algorithm according to the highest score obtained from all the
3D clusters present on them. As a result, within the same number of
top genes ranked by each algorithm, NetFlow3D-ranked genes con-
sistently include a higher number of known cancer genes listed by the
Cancer Gene Census (CGC)47,48 (Supplementary Data 3) as well as a
lower number of non-cancer-associated genes49–51 (Supplementary
Data 4), demonstrating our advanced sensitivity and specificity
(Fig. 2d-e). Thiswas further validated using an independent pan-cancer
dataset from the Catalogue of Somatic Mutations in Cancer
(COSMIC)48, where NetFlow3D maintained its leading performance
(Supplementary Fig. 4; Methods).

Beyond 3D clustering algorithms, we benchmarked NetFlow3D
against other methods for identifying cancer driver mutations,
including single-residue-based (“hotspot”) and whole-gene-based
methods. The test unit size of 3D clustering algorithms falls between
these two extremes. Notably, NetFlow3D outperforms these methods,
demonstrating the highest precision and recall (Supplementary Fig. 5).
While the hotspot method is highly precise, it lacks power when
background mutation rates are low or sample sizes are small. The
whole-gene-basedmethod, which considers the entire gene as the test

unit, can dilute statistical power and lacks precisionwhen only specific
regions within the gene are responsible for driving cancer. In contrast,
our 3D clustering algorithm in NetFlow3D provides flexible test unit
sizes at submolecular resolution, achieving a balance of higher preci-
sion and better power.

Overall, the 3D clusters identified by NetFlow3D demonstrate a
significant enrichment for catalytic residues52, while mutated residues
outside these clusters exhibit a significant depletion (Fig. 2f;Methods).
This pattern remains robust and is not sensitive to variations in p-value
cutoffs (Supplementary Fig. 6). Notably, this robust pattern is con-
sistent across 3D clusters identified from both experimentally-
determined structures and deep-learning-generated 3D structural
data (Supplementary Fig. 7a). Considering the intrinsic bias of inter-
protein clusters towards functional residues, as PPI interface residues
are known to be enriched for such residues22–24,45,53–55, we specifically
excluded these inter-protein clusters from our analysis and strictly
focused on intra-protein clusters. Our refined analysis shows that the
previously identified pattern persists (Supplementary Fig. 7b). More-
over, proteins involved in our 3D clusters demonstrate a significant
enrichment for known cancer genes, whereas proteins not involved in
any 3D clusters show a significantly depletion (Fig. 3a). This pattern is

Fig. 3 | The advantages of integrating 3D structural information and PPI net-
work topology over using either alone. a Enrichment was calculated as the ratio
of the observed fraction of known cancer genes among the genes under investi-
gation over the fraction of known cancer genes among all genes covered by the
TCGA dataset (expected fraction). The error bars indicate standard error, calcu-
lated using the delta method. P values for each barwere calculated using two-sided
Z-tests (****P < 0.0001). NetFlow3D-identified significantly interconnected mod-
ules: n = 561 genes; Significant 3D clusters: n = 5698 genes; Other mutated genes:
n = 8738 genes. P-values for comparisons between the observed fractions of known
cancer genes indifferent groupswere calculated using two-sided two-proportionZ-
tests. Source data are provided as a SourceData file.bConsistencywith established
biological processes was evaluated for NetFlow3D-identified significantly inter-
connectedmodules (n = 26), randomgroups ofproteinswith significant 3D clusters
matched in number and size (n = 26× 10 replicates), and randomly-selected

connected components in the networkwithmatched number and sizes (n = 26× 10
replicates). The box plots indicate the medians (centerlines), first and third quar-
tiles (bounds of boxes) and 1.5× interquartile range (whiskers). Any data point
outside this range is considered an outlier and plotted individually. P-values for
comparisons between groups were calculated using two-sided Mann-Whitney U
test. Source data are provided as a Source Data file. c Results from systematically
removing two key strategies that NetFlow3D used to incorporate 3D structural
information via nodes and edges. The color scale for nodes represents their initial
heat score. In the first and second rows, node color intensity reflects the sumof the
-log10-transformed p-value of the protein’s most significant 3D cluster and the
-log10-transformed p-value of the protein’s LOF enrichment (see Methods). In the
third row, node color intensity corresponds to the number of tumor samples in
which the protein has mutations.
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robust, remaining consistent across a range of p-value cutoffs (Sup-
plementary Fig. 8).

Importance of our end-to-end integration of 3D structural
information and PPI network topology
The critical innovation of NetFlow3D over previous methods lies in its
seamless, end-to-end integration of 3D structural information with PPI
network topology. To underscore the additional insights this integra-
tion provides, we compared the outcomes of NetFlow3D with those
frommethods that useonly information in either 3Dprotein structures
or PPI network topology.

The advantage of our end-to-end integration over solely relying
on 3D protein structural information manifests in two key aspects.
First, the dense interconnections among 3D clusters within the same
module further reinforce their validity, bolstering confidence in
molecular-level discoveries. This is evidenced by the observation that
proteins within NetFlow3D-identified significantly interconnected
modules (SupplementaryData 5) contain a significantly higher fraction
of known cancer genes compared to those identified solely by sig-
nificant 3D clusters, even though the latter already demonstrate sig-
nificant enrichment (Fig. 3a). Second, by extending the analysis
beyond identifying crucial 3D structural regions within proteins, the
propagation of 3D mutation clustering signals throughout the PPI
network provides deeper insights into the dysregulated biological
processes underlying tumorigenesis. This is demonstrated by the
observation that significantly interconnected modules identified by
NetFlow3D align more closely with established biological
processes56–60 than do random groups of those proteins with sig-
nificant 3D clusters which were organized to match the NetFlow3D-
identified modules in number and sizes (Fig. 3b). However, this closer
alignment is not just an outcome of the PPI network’s topology, as
randomly selected connected components with matched number and
sizes show significantly lower consistency with established biological
processes (Fig. 3b). Thus, it’s the effective integration of molecular-
level 3D clustering information and the PPI network’s topology that
plays a key role in uncovering critical biological processes that are
potentially central to cancer development.

The advantage of our end-to-end integration over the methods
relying solely on PPI network topology is the significant improvement
in statistical power. This improvement is demonstrated by the out-
comes of systematically removing the two key strategies that Net-
Flow3D used to incorporate 3D structural information via nodes and
edges (Fig. 3c; Methods). Initially, the edge weight in NetFlow3D,
determined by 3D clustering signals on PPI interfaces, was removed,
leading to uniform propagation from each node to all its neighbors. As
a result, the significantly interconnectedmodules identified thereafter
contain ~¼ of the proteins found in the original NetFlow3D-identified
significantly interconnected modules. Next, the initial heat scores
assigned to each node, determined by the 3D clustering signals on
each protein, was replaced by gene mutation frequency. This further
change fully reverted the original NetFlow3D framework to a standard
PPI network approach. Consequently, the significantly interconnected
modules identified thereafter contain only ~1/8 of the proteins identi-
fied by the original NetFlow3D framework.

Biological significance of NetFlow3D-identified significantly
interconnected modules
We benchmarked NetFlow3D-identified significantly interconnected
modules (hereafter called “NetFlow3D modules”) against well-
established cancer signaling pathways61 (positive controls) (Supple-
mentary Data 6) and Gene Ontology (GO) biological processes
(BPs)56–60 (background reference) (Supplementary Data 7). Enrichment
analysis for known cancer genes demonstrated that NetFlow3D mod-
ules exhibit enrichment levels comparable to those of well-established
cancer pathways and significantly surpass those found in GO BPs

(Fig. 4a). Furthermore, we analyzed mutation patterns within each
entity—whether aNetFlow3Dmodule, awell-known cancer pathway, or
a GO BP—by calculating enrichment for two distinct mutation cate-
gories: (i)mutationswithin significant 3Dclusters, and (ii) allmutations
(Methods). Consequently, well-known cancer pathways and Net-
Flow3D modules consistently demonstrate pronounced enrichment
trends for both mutation categories, with a particularly striking
increase when switching from all mutations to the mutations within
significant 3D clusters (Fig. 4b). In contrast, GO BPs exhibit no obvious
trend of enrichment for all mutations and a much compromised
enrichment for those within significant 3D clusters, with only a minor
increasewhen contrasting the twomutation categories. Notably, upon
splitting NetFlow3D modules into two groups based on whether they
contain known cancer genes, the mutation patterns across the two
groups are strikingly consistent (Fig. 4c), both resembling well-known
cancer pathways (Fig. 4b). In contrast, GO BPs present a different
picture: even those GO BPs that include known cancer genes exhibit
much weaker mutation enrichment trends for both mutation cate-
gories. Meanwhile, GO BPs lacking known cancer genes display vir-
tually no trend of mutation enrichment at all (Fig. 4c).

To demonstrate downstream molecular consequences of
NetFlow3D-identified mutations, we evaluated their statistical asso-
ciation with protein abundance. Initially, we performedmultiple linear
regression analysis, controlling for gene-specific and tissue-specific
baseline expression levels, as well as clinical covariates including sex,
age, tumor stage, and TMB (Supplementary Note 1). This analysis
revealed significant associations between the presence of NetFlow3D-
identified mutations and protein abundance (t-test: t(171109) = 6.0,
p = 1.6e-9, coefficient = 0.073, 95% CI = [0.049, 0.096]). In contrast, no
significant association was observed when conducting the same ana-
lysis using other mutations not identified by NetFlow3D (t-test:
t(1034939) = 0.38, p =0.70, coefficient = 0.0026, 95% CI = [-0.011,
0.016]). For a more detailed perspective, we conducted a fine-grained
analysis comparing protein abundance for each gene in each cancer
type, under scenarios with and without NetFlow3D-identified muta-
tions. As a control, we repeated the analysis using othermutations. Our
results revealed a significantly higher proportion of cases with differ-
ential protein abundance for NetFlow3D-identified mutations than for
other mutations (Supplementary Fig. 9).

To further evaluate the impact of genes with NetFlow3D-
identified mutations on cellular fitness, we utilized core fitness (CF)
genes identified from genome-scale CRISPR-Cas9 screens in 324
human cancer cell lines spanning 30 cancer types62. We analyzed the
enrichment of these core fitness genes in NetFlow3D results. Our
results consistently showed that, across various cancer types, genes
with NetFlow3D-identified mutations are most enriched for core fit-
ness genes (Supplementary Fig. 10). Additionally, genes with muta-
tions identified in isolation by our 3D clustering analysis also showed
significant enrichment in every cancer type, whereas genes without
mutations in 3D clusters did not exhibit significant enrichment in any
cancer type.

To demonstrate the clinical significance of NetFlow3D findings,
we compared the overall survival between patients with somatic in-
framemutations in our preprocessed TCGAdataset, grouping themby
whether their mutations were identified by NetFlow3D (Methods). We
used a Cox regression model to evaluate the statistical association
between NetFlow3D-identified mutations and patient survival, con-
trolling for clinical covariates including age, sex, tumor stage, and
tumor mutational burden (TMB). Our analysis revealed significant
negative survival associations across multiple cancer types, including
Thyroid carcinoma (THCA), Kidney renal clear cell carcinoma (KIRC),
Adrenocortical carcinoma (ACC), and Brain LowerGradeGlioma (LGG)
(Fig. 4d). The hazard ratios (HR) derived from the Cox model coeffi-
cients were consistently >1.5 across all four cancer types (Supple-
mentary Data 8).
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Next, we assessed NetFlow3D’s capability to uncover additional
insights beyond known cancer genes. Remarkably, 80% (447 out of
559) of the proteins identified within NetFlow3D modules are not
encoded by known cancer genes listed in the CGC. Moreover, even
after removing 3D clustering and LOF enrichment signals from known
cancer genes and subsequently re-applying our 3D structurally-
informed network propagation framework, the resulting significantly
interconnectedmodules still cover 23 out of the 26 original NetFlow3D
modules (Supplementary Fig. 11; Supplementary Note 2).

Apan-cancer functionalmap of somaticmutations across scales
Applying NetFlow3D to the TCGA pan-cancer dataset has yielded a
multiscale functionalmapof somaticmutations in cancer (Fig. 5). From
a biological perspective, this map encompasses a broad spectrum of
cellular processes and functions, spanning well-established cancer
pathways, components that are increasingly recognized through
recent evidence, and biological entities with less-characterized roles in
cancer (Supplementary Data 9). (i) Well-established cancer pathways.
Examples include p53 signaling, regulation of apoptosis, regulation of
E2F-dependent transcription, and intracellular signaling cascades like
Ras, PI3K, mTOR, and TGF-β. (ii) Increasingly recognized pathways
and protein complexes. Examples include Rho GTPase signal
transduction63, chromatin remodeling (e.g. PRC264, MLL complex65),

immune processes (e.g. antigen processing and presentation66), and
DNA repair mechanisms67 (e.g. interstrand cross-link repair and DNA
non-homologous end joining). (iii) Biological entities with less-
characterized roles in cancer. Examples include protein K11-linked
ubiquitination68, eIF2 activity69,70, TRiC71, TFIID complex72, and
calcineurin73. Notably, 46% of the NetFlow3D modules do not contain
any known cancer genes listed in CGC. These modules are particularly
intriguing as they represent unexplored opportunities for cancer
pathway identification. Their significance has been underscored by the
observation that these modules show mutation patterns strikingly
similar to those of well-established cancer pathways (Fig. 4b, c).

Shifting the focus to the methodological advancements, this
map generated by NetFlow3D not only aligns with key discoveries
from traditional PPI network analyses, but also provides additional
insights achieved through integrating 3D structural information.
Specifically, the map’s composition is threefold: (i) Components that
are also identifiable via traditional PPI network approaches. For
example, our map includes a vast majority of biological entities
identified by HotNet216, such as pathways like p53, PI3K, and KEAP1-
NFE2L2. It also encompasses protein complexes such as MLL, cohe-
sin, and SWI/SNF, as well as “linker genes” including regulators of Ras
signaling and elements of MAPK signaling. Furthermore, our map
also includes the complement system, as identified by Olcina et al.74

Fig. 4 | Evaluating the biological significance of NetFlow3D modules.
a Enrichment comparison for known cancer genes among well-known cancer
pathways (n = 748 genes), NetFlow3Dmodules (n = 561 genes), and Gene Ontology
(GO) biological processes (n = 12,523 genes). Enrichmentwas calculated as the ratio
of the observed fraction of known cancer genes in each group over the fraction of
known cancer genes among all genes covered by the TCGA dataset (expected
fraction). The error bars indicate standard error, calculated using the deltamethod.
P values for each bar were calculated using two-sided Z-tests (****P < 0.0001;
*P < 0.05). P-values for comparisons of the observed fractions between different
groups were calculated using two-sided two-proportion Z-tests. Source data are
provided as a Source Data file. b, c Enrichment was calculated as the ratio of the
observed fraction of mutations within each pathway/module/process to the
expected fraction, determined by the relative length of their proteins compared to
the total length of all proteins covered by the TCGA dataset. The box plots indicate

the medians (centerlines), first and third quartiles (bounds of boxes) and
1.5 × interquartile range (whiskers). Fold change for each pathway/module/process
was calculated as the ratio of their enrichment for mutations within significant 3D
clusters compared to all mutations. P-values for comparisons of fold changes
between groups were calculated using two-sided Mann-Whitney U tests. Source
data are provided as a Source Data file.b n = 32well-known cancer pathways; n = 26
NetFlow3Dmodules; n = 7524 GO biological processes. cNetFlow3Dmodules: with
known cancer genes: n = 14; without known cancer genes: n = 12. GO biological
processes: with known cancer genes: n = 5493; without known cancer genes:
n = 2031.dAssociationof NetFlow3D-identifiedmutationswith patients’ survival. P-
values and coefficients were derived from the Cox model (see Methods). Hazard
ratios (HR) were calculated by exponentiating the coefficients. Source data are
provided as a Source Data file.
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in their analysis of 69 cancer mutation datasets using HotNet2. (ii)
Components emerging from combining PPI network topology and
orthogonal data/analyses. For example, Wang et al.75 integrated PPI
network topology with GWAS and identified the spliceosome. Gupta
et al.76 integrated PPI network topology with gene co-expression
network and external pathway annotations such as KEGG/Reactome/
GO/IPA and identified Rho GTPase signal transduction. (iii) Compo-
nents uniquely identified by NetFlow3D through integrating PPI
topology with 3D structural information, such as PP2A, CCR4-NOT
complex, mitochondrial ribosome, and calcineurin, etc. This distinct
category highlights the additional insights provided by the end-to-
end integration of the local spatial organization of mutations on 3D
protein structures and their global topological organization in the
network.

Integrator-PP2A complex
To showcase how NetFlow3D reveals deeper insights into cancer biol-
ogy, we presented one NetFlow3D module as an example, which cor-
responds to two established biological entities: the integrator complex77

and the PP2A complex78 (Fig. 6a). These two biological entities work
collaboratively: PP2A is recruited to transcription sites by the integrator
complex, where PP2A functionally counteracts CDKs-driven cell-cycle
progression, thereby maintaining cell homeostasis79–82 (Fig. 6b).

Towards the identification of cancer driver mutations, we focused
on the p.Arg258Cysmutation in the PPP2R1A protein within thismodule.
NetFlow3D identified this mutation as being part of the significant 3D
clusters at the binding interfaces between PPP2R1A/PPP2R2A proteins
and PPP2R1A/PPP2R3A proteins (Fig. 6c-d). In our TCGA study, this
mutation originated from a patient with uterine corpus endometrial

Fig. 5 | A multiscale functional map of somatic mutations in cancer. The sig-
nificantly interconnectedmodules identified byNetFlow3D are displayed here. The
largest module is divided into 11 core biological entities, connected by gray arrows
indicatingmutation impacts between them. Importantly, red stars on the edges and

the bolding of these edges indicate the presence of significant inter-protein 3D
mutation clusters on the binding interfaces between interacting protein pairs. Drug
targets are labeled based on the full list of U.S. Food and Drug Administration
(FDA)-approved drugs, as detailed in Supplementary Data 10.
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carcinoma (UCEC). Additionally, mutations at the PPP2R1A codon 258
have been observed in serous and endometrioid carcinomas as reported
in several non-TCGA studies83–85. Our quantitative-proteomics-based
TMT-IP-MS and co-immunoprecipitation experiments showed that
PPP2R1A p.Arg258Cys mutation diminished PPP2R1A’s interactions with
almost all of its interactors (Fig. 6e). Particularly, it disrupted the inter-
actions with other PP2A subunits within this module (Fig. 6e-g). There-
fore, it is plausible to speculate that PPP2R1A p.Arg258Cys mutation
diminished PP2A function by disrupting its subunit interactions. Given
the previous evidence showing that the inactivation or inhibition of PP2A
promotes cancer development86–88, our experimental validation of the
disrupted PPP2R1A subnetwork (Fig. 6g) caused by the PPP2R1A
p.Arg258Cysmutation underscores the valueofNetFlow3D in identifying
cancer driver mutations and illuminating potential tumorigenic
mechanisms.

Importantly, NetFlow3D’s ability to identify the PP2A complex
hinges upon our end-to-end integration of 3D structural information
with PPI network topology. On one hand, PP2A was completely

overlooked using the standard PPI network approach. On the other
hand, >90% of PP2A subunits do not contain any single-residue hot-
spots, indicating that relying solely on mutation recurrence fails to
capture this full biological entity. In contrast, by utilizing 3D structural
insights from our Human Protein Structurome, NetFlow3D success-
fully identified significant 3D clusters on every PP2A subunitwithin this
module, affirming their significant associationwith cancer individually.
Furthermore, the dense interconnectivity among these significant 3D
clusters, as revealed by NetFlow3D, further reinforces the overall
functional significance of the PP2A complex in cancer biology.

Discussion
Ourwork demonstrates the effective integration of 3Dprotein structural
information with PPI network topology as achieved by NetFlow3D, our
end-to-end 3D structurally-informed network propagation framework.
This integration provides additional insights that can not be gained from
each component in isolation. NetFlow3D applied 3D clustering analysis
across the entire Human Protein Structurome, which not only

Fig. 6 | Example of a NetFlow3D module highlighting biological insights with
proof-of-concept experimental validation. a The biological entities incorporated
by this module include the integrator complex and the protein phosphatase 2A
(PP2A) complex.b Functionality of these entities: PP2A is recruited to transcription
sites by the integrator complex, where PP2A functionally counteracts cell-cycle
progression, therebymaintaining cell homeostasis. c,dApotential drivermutation
highlighted in this module, PPP2R1A p.Arg258Cys, identified based on the sig-
nificant 3D clusters at the binding interfaces between PPP2R2A and PPP2R3A. Sig-
nificance is determinedby adjustedP <0.05, derived fromBonferroni correctionof
raw P-values calculated using one-sided Poisson tests (Methods). The 3D protein
structures are visualized using the Python NGLview package. e TMT-IP-MS-based
quantitative proteomics analysis confirmed that PPP2R1A p.Arg258Cys diminished

PPP2R1A’s interactions with almost all of its interactors in HEK 293 T cells. The
volcano plot summarizes the quantitative results for the identified interactors that
co-purify with PPP2R1A p.Arg258Cys compared to PPP2R1A wildtype (WT) (n = 3
biologically independent experiments with similar results). One-sided two-sample
t-tests were used to calculate raw P-values, which were then adjusted using the
Benjamini-Hochbergmethod. Interactors were considered significantly depleted if
they had a fold change <½ and an adjusted P <0.05. Source data are provided as a
Source Data file. f Co-immunoprecipitation (Co-IP) confirming that PPP2R1A
p.Arg258Cys disrupted PPP2R1A–PPP2R3A interaction in HEK 293 T cells (n = 3
biologically independent experiments with similar results). Uncropped western
blot images are provided as a Source Data file. g Summary of experimentally vali-
dated disrupted PPP2R1A subnetwork.
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identified > 100-fold more potentially functional residues than using the
single-residue-based hotspot method, but also discovered over twice as
many significant 3D clusters compared to traditional 3D clustering
analysis using only experimentally-resolved structures. Moreover, our
strategy of 3D-structurally-informed network propagation led to the
identification of a much higher number of significantly interconnected
modules. These modules not only incorporated ~ 8 times more proteins
than those identified by standard PPI network analyses, but also
demonstrated a 2.6-fold greater enrichment of known cancer genes
compared to solely leveraging 3D structural information, thereby
revealing many aspects of cancer biology that were poorly understood.

In addition to pan-cancer studies, NetFlow3D is also applicable to
studies focusing on specific cancer types. It enables users to not only
input somatic mutation data, but transcriptome and interactome data
tailored to a particular cancer tissue context. NetFlow3D then applies
its 3D clustering algorithm to a subset of 3D structural data in the
Human Protein Structurome, filtered based on the context-specific
expression profile. Given that our Structurome contains the 3D
structures of all human protein isoforms, it offers a great capacity to
adapt to a variety of cellular contexts. Following this, NetFlow3D
propagates 3D clustering signals through a context-specific PPI net-
work. Considering the current limitations in interactome data, where
most PPIs are mapped in generic contexts such as using yeast or
HEK293 cell lines, NetFlow3D addresses this by filtering the general
human PPI network with context-specific transcriptome data, thus
focusing on the subnetwork of genes that are actually expressed.
Looking ahead, as experimentally-determined cell-type-specific inter-
actome data become available, we anticipate further improvement in
NetFlow3D’s performance for these targeted applications.

Furthermore, the core principles of NetFlow3D are not confined
to somaticmutations in cancer, but can be extended to understanding
germline variants in various diseases. Recent studies have demon-
strated that permutation-based 3D clustering analysis,when applied to
neurodevelopmental disorders89,90 and the Human Gene Mutation
Database (HGMD)19, can effectively identify rare disease-associated
variants. Adapting NetFlow3D to utilize the latest genome-wide mod-
els of germline mutation rates at base pair resolution91,92 represents an
advancement to these approaches. Additionally, NetFlow3D’s context-
specific analyses are particularly well suited for studying diseases that
manifest in specific tissues or cell types.

Despite these strengths, NetFlow3D’s performance is limited by
the quality of available 3D structural data, especially those generated
by advanced deep learning algorithms. Our Human Protein Structur-
ome now contains atomic-resolution 3D structures for all individual
human protein isoforms. However, for most PPIs, the Structurome is
limited to interface residue data. Advanced deep learning algorithms,
including various AlphaFold-based methods (such as AlphaFold-
Multimer32, AF2Complex31, and others30,33,34) have begun producing
atomic-resolution 3D structures for multi-protein complexes. Yet,
these methods are currently capable of producing high-confidence
models for only a very limited subset of PPIs. Therefore, updating the
PPI interfaces in our existing Structuromewith these atomic-resolution
structural models is still a considerable challenge. Continued
advancements in these techniques are expected to extend their cov-
erage, and we foresee further enhancement in NetFlow3D’s perfor-
mance as we integrate these evolving resources.

NetFlow3D also has limitations in fully accounting for all types of
driver mutations. This includes in-frame mutations that, despite not
clustering on 3D protein structures, are still functional in cancer. For
example, mutations impacting protein stability often occur within the
core of proteins, altering function without targeting specific residues.
Similarly, mutations in intrinsically disordered regions (IDRs) can
markedly disrupt overall protein flexibility. Moreover, copy number
variations (CNVs), structural variants (SVs), and noncoding mutations
– especially those affecting regulatory elements93–99, contribute to

altering gene dosage or expression, thereby diversifying cancer
mechanisms. Expanding NetFlow3D to integrate these mutation types
would improve its ability to offer a more complete understanding of
cancer biology, representing a crucial area for future development.

Methods
Data collection
The Cancer Genome Atlas (TCGA). 3.6M somatic mutations across
10,295 tumor samples and 33 cancer types were obtained from the
standard MC3 analysis100. We included an additional 178 tumor sam-
ples in the current TCGAprogram (https://portal.gdc.cancer.gov/), not
covered by the MC3 dataset but provided by Chang et al.1. RNA-seq
data were obtained fromRepository on the GDC data portal101 (https://
portal.gdc.cancer.gov/).

The Catalogue of Somatic Mutations in Cancer (COSMIC). We
obtained coding point mutations from genome-wide screens (including
whole exome sequencing) under genome assembly GRCh37, along with
sample data and cancer classification information fromCOSMIC release
v9848 (https://cancer.sanger.ac.uk). All TCGA tumor samples were
excluded from this dataset to ensure independence. We further filtered
the dataset to retain only primary tumor samples, i.e., retaining those
labeled as “primary” in the “TUMOUR_SOURCE” column and excluding
“cell-line”, “xenograft”, “organoid culture”, or “short-term culture” in the
“SAMPLE_TYPE” column. To eliminate redundancy in COSMIC, we used
the drop_duplicates() function in pandas, with key identifiers including
“CHROMOSOME”, “GENOME_START”, “GENOMIC_WT_ALLELE”, “GEN-
OMIC_MUT_ALLELE”, and “TUMOUR_ID”. The cancer classification
information in this dataset was aligned with TCGA projects using sub-
ject matter expertize. Tumor samples that could not align with any
TCGA projects were categorized as having an unknown cancer type.

Data preprocessing
VEP annotation. A single canonical effect per mutation was reported
using Variant Effect Predictor (VEP) version 107102, following the
approach used by Chang et al.1. Additionally, to evaluate the con-
sequence of accounting for proteoformdiversity, we conducted analysis
on the same TCGA mutation dataset, but mapping each mutation to all
possible protein isoforms. Details on this are provided in the Supple-
mentaryNote 3. According to VEP annotations, weonly retained protein-
altering mutations, including LOF mutations (“Consequence” column:
frameshift_variant, stop_gained, stop_lost, start_lost, splice_acceptor_var-
iant, splice_donor_variant, splice_donor_5th_base_variant) and in-frame
mutations (“Consequence” column: missense_variant, inframe_deletion,
inframe_insertion).

Excluding germline variants. According to VEP annotations, we
removed mutations with non-zero allele frequencies in gnomAD103

(“gnomADe_AF” column), which were identified as germline variants
present in the general population. The consequences of applying this
filter are detailed in the Supplementary Fig. 12.

Excluding mutations in unexpressed genes. We defined expressed
genes of a specific cancer type as those with RNA expression levels ≥1
FPKM in ≥80% of tumor samples within that cancer type. We only
retained the mutations in those expressed genes of their cancer types.
For the tumor samples of unknown cancer types, we only retained
their mutations in the genes that are expressed in ≥ 80% of TCGA
cancer types. Following the approachby Leiserson et al.16,mutations in
18 well-known cancer genes (AR, CDH4, EGFR, EPHA3, ERBB4, FGFR2,
FLT3, FOXA1, FOXA2, MECOM, MIR142, MSH4, PDGFRA, SOX1, SOX9,
SOX17, TBX3, WT1) that have low transcript detection levels were
exempted from the aforementioned RNA expression filter. The con-
sequences of applying this filter are detailed in the Supplemen-
tary Fig. 13.
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UniProt ID mapping. We obtained the ID mapping data from
UniProt104, which incorporates the mapping between UniProt IDs and
VEP-annotated Ensembl gene, transcript, and protein IDs. We mapped
each mutation to UniProt entries, initially based on their annotated
Ensembl protein IDs, then sequentially using Ensembl transcript and
gene IDs if protein IDs are not available.

After data preprocessing, the TCGA dataset yielded
1,038,899 somatic protein-altering mutations across 9,946 tumor
samples in 33 cancer types. The COSMIC dataset yielded
571,789 somatic protein-altering mutations across 12,352 tumor sam-
ples that were aligned to 27 TCGA cancer types.

Construction of the human protein structurome
Data collection. Experimentally-determined structures were obtained
from the ProteinDataBank105,106 (PDB, http://www.rcsb.org/), specifically
focusing on asymmetric units. Predicted 3D structures of all human
protein isoforms were obtained from the AlphaFold Protein Structure
Database25,107 (AlphaFold DB), encompassing both 20,431 canonical iso-
forms (Fig. 1b), and 165,328 non-canonical isoforms. Interface residue
data for 146k known human PPIs were obtained from PIONEER24.

Processing of experimentally-determined structures. Residue-level
mapping between UniProt and PDB entries were obtained from the
Structure Integration with Function, Taxonomy and Sequences108,109

(SIFTS). Based on the PDB structures, we constructed two undirected
graphs G1 = V 1, E1

� �
and G2 = V2, E2

� �
. G1 describes the physical con-

tacts between residues within the same polypeptide chains, while G2

describes the physical contacts between residues across different
polypeptide chains. V 1 includes the UniProt residues covered by at
least one PDB structure. E1 is the set of residue pairs in the same
polypeptide chains whose minimal three-dimensional (3D) distances
among all relevant PDB structures are no larger than 6Å. The 3D dis-
tance between two residues in a given PDB structure is defined as the
euclidean distance between their closest atoms in that structure. E2 is
the set of inter-chain residue pairs whose minimal 3D distances are no
larger than 9Å. V2 is the set of residues involved in E2. G1 and G2 were
added to the Human Protein Structurome.

Processing of 3D structural data from deep learning algorithms.
Using the atomic-resolution 3D protein structures from AlphaFold DB,
we constructed G3 = V 3, E3

� �
following the same procedures used for

constructing G1. Residues with all levels of model confidence in these
structures were taken into account. G3 was added to the Human Pro-
tein Structurome. For the interface residue data from PIONEER, we
used “very high” confidence predictions. This dataset was also added
to the Human Protein Structurome.

NetFlow3D: Identifying 3D clusters of mutated residues
3D cluster identification based on atomic-resolution 3D protein
structures. (i) Intra-protein clusters: In-framemutations weremapped
toG1 andG3 respectively. Vertices affected by thesemutations and the
edges between them were extracted as subgraph g1 and g3. C1 and C3

are the sets of connected components in g1 and g3, which were con-
sidered intra-protein clusters identified based on PDB and AlphaFold
DB structures, respectively. We removed the intra-protein clusters in
C3 that have at least one residue overlappingwith any 3D clusters in C1

to avoid reporting redundant 3D clusters. (ii) Inter-protein clusters:We
obtained 119,526 high-quality binary PPIs for Homo Sapiens from
HINT110 (http://hint.yulab.org/), a dataset released in August 2021. We
restricted our focus to these PPIs (denoted as H) for the inter-protein
3D cluster identification. e2 is a subset of edges inG2 whose endpoints
are both affected by in-frame mutations. For a PPI between protein A
and B, g1A = v1A, e1A

� �
and g1B = v1B, e1B

� �
are subgraphs extracted from

g1 incorporating the vertices and edges in A and B, respectively. e2AB is
a subset of e2 where each edge connects one vertex in v1A and one

vertex in v1B. In the merged graph g2AB = v1A ∪ v1B, e1A ∪ e1B ∪ e2AB
� �

,
C2AB is the set of connected components having at least one edge in
e2AB. C2 =

S
A,Bf g2HC2AB represents all inter-protein clusters identified

based on PDB structures. Overall, Cstructure =C1 ∪C2 ∪C3 represents
the set of 3D clusters identified based on atomic-resolution 3D protein
structures.

3D cluster identification based on PPI interface residue data from
PIONEER. For a PPI between protein A and B, in-frame mutations were
mapped to the interface residues, and the set of mutated interface
residues was defined as an inter-protein 3D cluster, denoted as C4AB.
Cinterface = C4ABj A,Bf g 2 H

� �
represents the set of inter-protein 3D clus-

ters identified based on the PPI interface residue data from PIONEER.

NetFlow3D: Background mutability model
To accurately model the background mutation rate (BMR) that varies
extensively across the genome, we used a model that includes five cov-
ariates of mutation tendency: mRNA expression level, DNA replication
timing, chromatin status as indicated by HiCmapping, local GC content,
and gene density. The fundamental concept of this model originated
from MutSigCV41: each gene g was positioned in a high-dimensional
covariate space, estimating its local BMR based on its own silent and
noncodingmutations, and, if necessary, those of its closest neighbors in
this covariate space. Here, xSNV

g denotes the sumof silent and noncoding
single nucleotide variants (SNVs) in gene g and its neighbors, and XSNV

g
represents the total number of sequenced bases where silent and non-
coding SNVs can occur in gene g and its neighbors. Consequently, the
local BMR of coding SNVs in gene g is calculated as:

BMRSNV
g =

xSNV
g

XSNV
g

ð1Þ

Similarly, xindelg accounts for insertions and deletions (indels)
within gene g and its neighbors, and X indel

g represents the total bases
sequenced in the same regions. The local BMR for coding indels in
gene g is calculated as:

BMRindel
g =

xindelg

X indel
g

ð2Þ

To estimate the expected number of in-frame and LOFmutations
in gene g, we calculate the total number of covered bases in the coding
region where mutation type t (t =missense, nonsense, splice site) can
occur, denoted asNt

g . One basemay contribute fractionally tomultiple
mutation types. For example, a covered Cbasemight count 2/3 toward
missense and 1/3 toward nonsense if mutations to A or G change the
amino acid, while amutation toT creates a stop codon. Theprobability
of a random SNV in gene g falling intomutation type t is calculated as:

At
g =

Nt
g

Ncoding
g

ðt =missense, nonsense, splice siteÞ ð3Þ

where Ncoding
g is the coding length of gene g in base pairs. Given that

α =9% (51,164 out of 56,031) of coding indels are in-frame and the rest
are frameshift, we calculated the expected number of in-frame and
LOF mutations in gene g as:

E in�frame
g =Amissense

g � BMR
SNV

g
+α � BMRindel

g ð4Þ

ELOF
g = Anonsense

g +Asplice site
g

� �
� BMR

SNV

g
+ 1� αð Þ � BMRindel

g ð5Þ

To avoid false positives due to exceedingly small local BMR in
some genes, we set lower thresholds for E in�frame

g and ELOF
g at the 0.01
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quantile (1st percentile) of all E in�frame
g

n o
and all ELOF

g

n o
, respectively.

For a UniProt entry u, its expected number of in-frame and LOF
mutations are calculated as:

E in�frame
u =

X
g2U

E in�frame
g ð6Þ

ELOF
u =

X
g2U

ELOF
g ð7Þ

where U is the set of genes encoding this UniProt entry u. In cases
where E in�frame

u (or ELOF
u ) is absent, we adopted the median E in�frame

g

n o
(or ELOF

g

n o
) of all genes as default for that UniProt entry u.

NetFlow3D: Determination of cluster significance
For an intra-protein 3D cluster C composed of k residues in UniProt
entry u, the expected number of in-framemutations across np patients
in C is calculated as:

EC = E
in�frame
u � k

lu
� np ð8Þ

lu is the length of UniProt entry u in amino acids.
For an inter-protein 3D cluster C spanning across the PPI interface

of UniProt entry u and v, incorporating ku residues in u and kv residues
in v, the expected number of in-framemutations across np patients in
C is calculated as:

EC = E in�frame
u � ku

lu
+ E in�frame

v � kv

lv

� 	
� np ð9Þ

OC denotes the observed number of in-framemutations across np

patients in C. The significance of C is determined by the one-sided p-
value from Poisson test:

pC =P X ≥OC

� �
= 1� P X<OC

� �
= 1�

XOC�1

x =0

EC
x

x!
e�EC ð10Þ

The Poisson test was applied to all 3D clusters. Bonferroni cor-
rection was separately applied to the 3D clusters in Cstructure and
Cinterface. 3D clusters with adjusted pC<0:05 were considered sig-
nificant. Additionally, we benchmarked these p-values via permutation
tests (Supplementary Note 4), and observed a strong correlation
between these p-values from NetFlow3D and those from permutation
tests, with R2 =0:75 (Supplementary Fig. 14).

NetFlow3D: Protein-specific LOF enrichment signals
For aUniProt entryu, the expectednumber of LOFmutations acrossnp

patients is calculated as:

Eu = E
LOF
u � np ð11Þ

The significance of LOF enrichment in u is determined by the one-
sided p-value from Poisson test:

pu =P X ≥Ou

� �
= 1� P X<Ou

� �
= 1�

XOu�1

x =0

Eu
x

x!
e�Eu ð12Þ

Ou denotes the observed number of LOF mutations across np

patients in u. Bonferroni correction was applied, and the UniProt
entries with adjusted pu <0:05 were considered significantly enriched
for LOF mutations.

NetFlow3D: Network propagation model
Construction of the PPI network. The initial PPI network was built out
of the aforementioned high-quality binary human PPIs from HINT. We

filtered this network to encompass only genes expressed in any of the
input cancer types. Theaforementioned 18well-knowncancer geneswith
low transcript detection levels were considered expressed. The resulting
PPI network was represented by an undirected graph GPPI = VPPI, EPPI

� �
.

Heat definition. The initial amount of heat assigned to protein u was
calculated as:

hu =h
in�frame
u +hLOF

u ð13Þ

where

hin�frame
u = � log10 min pC jC 2 Cu

� �� � ð14Þ

hLOF
u = � log10 pu

� � ð15Þ

Cu denotes the set of 3D clusters that contain at least one residue in
proteinu. Bothhin�frame

u andhLOF
u are constrained to amaximumvalueof

300 to prevent infinite heat scores that could have resulted from zero
p-values. The initial heat distribution is described by a diagonal matrix
Dh where the i, ið Þ entry is the amount of heat placed on protein i.

Heat transfer weight. At each time step, proteins in the PPI network
pass to and receive heat from their neighbors, while retaining a frac-
tion β of their heat. Notably, when a protein transfers its remaining
1� β fraction of heat to its neighbors, the heat is unevenly distributed.
The amount of heat transferred along the edge between protein i and j
is proportional to the weighting factor defined as:

wi, j = � log10 min pC jC 2 Ci, j

� �� �
+w0 ð16Þ

Ci, j denotes the set of inter-protein 3D clusters that are specific to
the PPI between protein i and j. w0 = 1 is a baseline value, ensuring no
edgehas zeroweight.wi, j is also constrained to amaximumvalueof 300.

Heat diffusion and identification of interconnected modules. Once
the initial heat assigned to each protein is determined, and the heat
transfer weight along each edge is determined, the model is run until
steady state is reached. If a unit of heat is placed on protein j, the net
heat transferred from protein j to protein i is given by the i, jð Þ entry of
the diffusion matrix F defined by:

F =β I � 1� βð ÞWð Þ�1 ð17Þ

where

Wi, j =
wi, jP

k2Zj
wk, j

ð18Þ

Zj refers to the neighbors of protein j. The initial heat distribution is
described by a diagonal matrixDh where the i, ið Þ entry is the amount of
heatplacedonprotein i. The exchangedheatmatrixE is thendefinedby:

E = FDh ð19Þ
Eði, jÞ is the net heat transferred from protein j to protein i, given

the initial heat hj at protein j. We constructed a weighted directed
graph based on E: If E i, jð Þ> δ, there was a directed edge from protein j
to protein i of weight E i, jð Þ. We then identified strongly connected
components in this graph, which we term “interconnected modules”. A
strongly connected component C in a directed graph is a set of vertices
such that for every pair u, v of vertices in C there is a directed path from
u to v and a directed path from v to u. Leiserson et al.16 have demon-
strated that the identification of strongly connected componentswithin
a directed graph substantially reduced reporting “star graphs”, which
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are centered around well-studied, highly mutated cancer proteins, but
include surrounding proteins with few mutations and little biological
relevance. Our method strictly aligns with this principle, ensuring that
the identified “interconnected modules” do not present with any one-
way configurations. Thus, proteins in our “interconnectedmodules” are
not merely passive recipients of influence from others’ 3D mutation
clusters but also act as significant sources of influence.

Parameter determination. (i) Insulating parameter β: We used β=0:5,
as used by HotNet216. (ii) Edge weight parameter: The rationale behind
selecting a δ is basedon the fact that randomizeddatawill typically not
yield large “interconnected modules”. Therefore, choosing an appro-
priate value of δ can help identify “interconnected modules” that are
statistically significant and likely to be biologically relevant. To gen-
erate a random undirected graph Grandom, we randomly swapped EPPI



 


edge pairs in GPPI while keeping the initial amount of heat on each
protein fixed. The weighting factors wi, j

n o
were then randomly

assigned to the newly swapped edges. Edge swapping was used to
maintain the degree of each protein constant during the randomiza-
tion process. We then applied the aforementioned heat diffusion
model to Grandom and identified the minimum δ such that all “inter-
connected modules” had size ≤ 5. We generated 20 such random
directed graphs and identified a δ for each of them. We used the
smallest value among these δ’s as the final value of δ. “Interconnected
modules” exceeding a size of 5 were deemed significant, termed as
“significantly interconnected modules” in our study.

Implementing state-of-the-art 3D clustering algorithms
We applied four state-of-the-art 3D clustering algorithms to our pre-
processed TCGA and COSMIC dataset, namely HotSpot3D9, 3D
hotspot11, HOTMAPS13, and PSCAN10. Given that these approaches
compiled protein structures from different resources but they all used
PDB,we restricted the focus to the 3D clusters identified based on PDB
structures to make fair comparisons. For all four algorithms, default
parameters were used if not specified. We applied HotSpot3D to our
mutation data through the HotSpot3D web server111. For PSCAN, we
tested both the mean and variance of the genetic effects within each
scan window using the PSCAN R package, ultimately plotting the
performance curve using the variance test results because they yielded
a much better performance curve than the mean test. PSCAN input
files were generated from SCORE-Seq112 as suggested. For the muta-
tions in each gene, SCORE-Seq was applied to the corresponding
genotypes in the affected tumor samples and their matched normal
samples. When specifying SCORE-Seq parameters, we set the minor
allele frequency (MAF) upper bound to 1 andminor allele count (MAC)
lower bound to 0 to include all mutations. For HotMAPS, Tippett’s
method was employed to aggregate the p-values of hotspot residues
within each 3D cluster.

Standard PPI network analyses
The initial amount of heat placed on each protein in GPPI was deter-
mined by the number of tumor samples where the protein had muta-
tion(s). Both in-frame and LOF mutations were accounted for. The
weighting factors wi, j

n o
were all set to 1. The remaining settings were

identical to those used in the heat diffusion model described earlier.

Compiling catalytic residues
Catalytic residueswere obtained fromM-CSA52 (https://www.ebi.ac.uk/
thornton-srv/m-csa/). We used the dataset that incorporates both the
manually curated catalytic residues and their sequence homologs.

Compiling benchmark gene sets
Known cancer genes. A list of 738 known cancer genes (tier 1 + tier 2)
was obtained from CGC47,48 (https://cancer.sanger.ac.uk/census, 10/4/
2023 release).

Non-cancer-associated genes. Non-cancer-associated genes were
compiled from three sources: (i) 1,297 genes from Reva et al.49 in their
category iv, i.e., genes with no functional mutations and no available
associations with cancer; (ii) 129 genes annotated as “nonfunctional”
by Saito et al.50, including genes frequently affected by passenger
hotspot mutations and olfactory genes; (iii) 194 genes confidently
under neutral selection in human cancers identified by Hess et al.51. By
combining these three datasets we got a total of 1574 unique genes,
from which we removed 47 genes in CGC. The remaining 1,527 genes
were considered non-cancer-associated.

Compiling well-known cancer pathways and GO biological
processes
Cancer signaling pathways. 32 manually curated cancer signaling
pathways were obtained from NetSlim61 (http://www.netpath.org/
netslim). Specifically, we extracted DataNode from the GPML file of
each pathway, from which we excluded DataNode without type or
whose type is “Metabolite” or “Complex”.

General biological processes. 7,530 Gene Ontology (GO) biological
processes were obtained from the Molecular Signatures Database
(MSigDB) C5 collection56–60 (http://www.gsea-msigdb.org/gsea/
msigdb). We excluded GO biological processes that did not contain
any protein-coding genes.

Consistency with established biological processes
For every significantly interconnected module identified by Net-
Flow3D, we assessed the overlap between the module’s proteins and
the genes of each GO BP, computing a Jaccard similarity coefficient.
The alignment of a NetFlow3D-identified significantly interconnected
module with established biological processes is determined by the
highest Jaccard similarity coefficient between this module and any GO
BPs. This criterionwas also employed for evaluating randomly selected
connected components and randomgroups of proteinwith significant
3D clusters.

Mutation pattern analysis
Mutation enrichmentwas determinedby the ratio of observed fraction
of mutations over the relative length of proteins within each Net-
Flow3Dmodule, well-known cancer pathway or GOBP. Relative length
is defined as the sum of protein sequence lengths within each set
divided by the total sequence length of all proteins with in-frame
mutations.

Definition of NetFlow3D-identified potential driver mutations
Within the significantly interconnected modules identified by Net-
Flow3D, we identified potential driver mutations: For each protein, we
identified itsmost significant 3D cluster that surpasses the significance
threshold and considermutationswithin this cluster as potential driver
mutations. This aligns with how we determine the initial heat score at
each node. For each PPI, we identified the most significant 3D cluster
that surpasses the significance threshold at its binding interface. The
mutations within this cluster are designated as potential driver muta-
tions. This aligns with how we determine heat propagation weight
along each edge.

Survival analysis
Patient clinical data were obtained from the TCGA Pan-Cancer Clinical
Data Resource113 (TCGA-CDR). Patientswithout valid tumor statuswere
excluded from the analysis. The overall survival (OS) data was used as
the clinical outcome endpoint. Our analysis focused on the patients
with in-frame mutations in our preprocessed TCGA pan-cancer data-
set. We compared the overall survival between patients grouped by
whether their mutations were identified as potential driver mutations
by NetFlow3D. Kaplan-Meier estimation was used to generate survival
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curves for both groups. Cox regression was used to evaluate the sta-
tistical association between the presence of NetFlow3D-identified
mutations and OS, with tumor stage, age, sex, and tumor mutation
burden (TMB) included as covariates. For brain lower grade glioma
(LGG), tumor stage was excluded from the Cox regression analysis due
to unavailable data. The regression coefficients of NetFlow3D-
identified mutations indicate their impact on hazard, with their
exponential values representing the hazard ratio (HR) and p-values
indicating the significance of the association.

Cloning and plasmid construction
Single-colony-derived mutant clones were constructed using Clone-
seq43. Wild-type PPP2R1A clones, sourced from the hORFeome v8.1
collection114, were used as the template for site-directed mutagenesis
conducted by Eurofins Scientific. Mutagenesis of the PPP2R1A c.772
C > T (p.Arg258Cys) mutation was performed at 96-well scales using
site-specific mutagenesis primers and full-length human ORF tem-
plates. Primers for mutagenesis were designed using the webtool
http://primer.yulab.org, and a list of all primers used in this study is
provided in Supplementary Data 13. PCR product was digested over-
night usingDpnI (NEB)without a ligation step tomaximize throughput
and then transformed directly into competent cells to isolate single
colonies. Then, 4 colonies per mutagenesis reaction were hand-picked
and arrayed into 96-well plates. After 21 h incubation at 37 °C, glycerol
stocks were generated and then clones were pooled into 4 respective
bacterial pools.MaxipreppedDNAs fromeach of the 4 poolswere then
combined through multiplexing (NEBNext) and then sequenced in a
single 1 × 100 single-end Illumina HiSeq run. Properly mutated clones
were then identified by next-generation sequencing analysis and
recovered from single-colony glycerol stocks. We employed the
Gateway cloning technology to insert the PPP2R1A or its mutant form
into the pHAGE-CMV-GAW-3xFlag-IRES-PURO vector, and PPP2R3A
into the pHAGE-CMV-GAW-3xMyc-IRES-PURO vector for subsequent
analyses.

Affinity purification
HEK293T cells (Catalog Number: CRL-3216) were obtained from
ATCC. HEK 293T cells were maintained in DMEM medium supple-
mented 10% Fetal Bovine Serum. 8 µg of PPP2R1A or PPP2R1A c.772
C > T were transfected into the cells with 40 µl of 1mg/ml-1 PEI
(Polysciences, 23966) and 1.2ml OptiMEM (Gibco, 31085-062). After
48 hrs incubation, cells were washed three times in 10ml DPBS (VWR,
14190144), resuspended in 500 µl of RIPA buffer (50mM Tris pH7.5,
150Mm NaCl, 5mM EDTA, 1.0% NP-40, 0.25% Sodium Deoxycholate)
and incubated on the ice for 30min. The whole lysate is subjected to
120 s of 40% amplitude sonication using a sonifier cell disruptor
(BRANSON,500-220-180). Centrifugation was used for 15min at
16,100 g and 4 °C to separate the extracts. 500 µl of cell lysate per
sample reaction was incubated with 15 µl of EZ view Red Anti-FLAG
M2 Affinity Gel (Sigma, F2426) at 4 °C overnight using a nutator in
order to facilitate co-immunoprecipitation. Following incubation,
bound proteins were eluted in 200 µl of elution solution (10mMTris-
Cl pH 8.0, 1% SDS) at 65 °C for 15min after being washed three times
in cell RIPA buffer.

Cell culture, co-immunoprecipitation and western blotting
HEK293T cells were cultured in 10 cmplates until they reached 40-50%
confluency. 4 µg of bait construct (PPP2R1A or PPP2R1A c.772 C >T),
4 µg of prey construct (PPP2R3A), 40 µl of 1mg/ml-1 PEI (Polysciences,
23966), and 1.2ml of OptiMEM (Gibco, 31085-062) were used to
transfect the cells. After 48hrs incubation, cells were washed three
times in 10ml DPBS (VWR, 14190144), resuspended in 500 µl RIPA
buffer (50mMTris pH7.5, 150MmNaCl, 5mMEDTA, 1.0%NP-40, 0.25%
Sodium Deoxycholate) and incubated on the ice for 30min. Whole

lysate is sonicated on a sonifier cell disruptor (BRANSON,500-220-180)
for 120 s at 40% amplitude. Extracts were cleared by centrifugation for
15min at 16,100 g at 4 °C. 500 µl of cell lysate per sample reaction was
incubated with 15 µl of EZ view Red Anti-FLAG M2 Affinity Gel (Sigma,
F2426) at 4 °C overnight using a nutator. After incubation, bound
proteins were eluted in 200 µl of elution solution (10mM Tris-Cl pH
8.0, 1% SDS) at 65 °C for 15min after being washed three times in cell
RIPA buffer. Following an 8% SDS-PAGE gel run on FLAG-co-purified
samples, the proteinswere transferred to PVDFmembranes. Anti-FLAG
(Sigma, F1804, M2), and Anti-MYC (Invitrogen, 13-2500, 9E10) at both
1:5000 dilutions were used for immunoblotting analysis. Uncropped
and unprocessed scans are supplied in the Source Data40 file.

Proteomic sample preparation
IP eluates were subjected to reduction with 200mM TCEP for 1 h at
55 °C. Subsequently, alkylation was performed for 30min at room
temperature in darkness using 375mM iodoacetamide. The samples
were then digested using Trypsin Gold, mass spectrometry grade
(catalog no. V5280; Promega), at an enzyme-to-substrate ratio of 1:100.
The samples were incubated overnight at 37 °C. Following this, the
concentrations of peptides were quantified using the Pierce Quanti-
tative Colorimetric Peptide Assay (catalog no. 23275; Thermo Scien-
tific). For TMT tests, samples were resuspended and normalized using
1M triethylammonium bicarbonate (catalog no. 90114; Thermo Sci-
entific). Samples were labeled using TMT10plex IsobaricMass Tagging
Kit (catalog no. 90113; Thermo Scientific) at a (w/w) label-to-peptide
ratio of 20:1 for 1 h at room temperature. Labeling reactions were
quenched by the addition of 5% hydroxylamine for 15min and pooled
and dried using a SpeedVac. Labeled peptides were enriched and
fractionated using Pierce High pH Reversed-Phase Peptide Fractiona-
tion Kit according to the manufacturer’s protocol (catalog no. 84868;
Thermo Scientific). Liquid chromatography–tandem mass spectro-
metry Fractions were analyzed using an EASY-nLC 1200 System (cat-
alog no. LC140; Thermo Scientific) equipped with an in-house 3μm
C18 resin-(Michrom BioResources) packed capillary column
(125μm×25 cm) coupled to an Orbitrap Fusion Lumos Tribrid Mass
Spectrometer (catalog no. IQLAAEGAAPFADBMBHQ; Thermo Scien-
tific). The mobile phase and elution gradient used for peptide
separation were as follows: 0.1% formic acid in water as buffer A and
0.1% formic acid in 80% acetonitrile as buffer B; 0–5min, 5%-8% B;
5–65min, 8–45% B; 65–66min, 45%–95% B; 66–80min, 95% B; with a
flow rate set to 300 nlmin-1. MS1 precursors were detected at m/
z = 375–1500 and resolution = 120,000. A CID-MS2-HCD-MS3 method
was used for MSn data acquisition. Precursor ions with charge of 2+ to
7+ were selected for MS2 analysis at resolution = 50,000, isolation
width =0.7m/z, maximum injection time = 50ms and CID collision
energy at 35%. 6 SPS precursors were selected for MS3 analysis and
ions were fragmented using HCD collision energy at 65%. Spectra were
recorded using Thermo Xcalibur Software v.4.4 (catalog no. OPTON-
30965; Thermo Scientific) and Tune application v.3.4 (Thermo Scien-
tific). Raw data were searched using ProteomeDiscoverer Software 2.3
(Thermo Scientific) against an UniProtKB human database.

Downstream proteomic analysis
We employed our computational tool Magma115 to analyze mass
spectrometry proteomics data. Magma quantifies the differences in
protein abundance between two experimental conditions by calcu-
lating fold-change (FC) and p-values. By comparing each bait protein
(PPP2R1A or PPP2R1A c.772C >T) against untransfected HEK293T-
cells, we identified the bait protein’s interactors using criteria of fold
change (FC) > 2, adjusted p-value < 0.05, and peptide-spectrum mat-
ches (PSM) > 10. Our analysis was then narrowed to the combined set
of interactors for both PPP2R1A and its mutant form PPP2R1A c.772
C > T. To elucidate the specific effects of the c.772 C > T mutation, we
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generated a volcano plot using the FC and adjusted p-values derived
from the comparison between the mutant variant PPP2R1A c.772 C >T
and the wild-type PPP2R1A. Known contaminants in AP-MS experi-
ments, including keratin (KRT), myosins (MYO), small ribosomal sub-
unit proteins (RPS), heat shock-related 70 kDa proteins (HSPA), and
large ribosomal subunit proteins (RPL), were excluded from the
analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The TCGAMC3 dataset was downloaded from https://gdc.cancer.gov/
about-data/publications/mc3-2017. TCGA RNA-seq data and proteome
profiling data was downloaded from https://portal.gdc.cancer.gov/.
The ID mapping file was downloaded from https://ftp.uniprot.org/
pub/databases/uniprot/current_release/knowledgebase/idmapping/
by_organism/HUMAN_9606_idmapping.dat.gz. SIFTS data was down-
loaded from https://www.ebi.ac.uk/pdbe/docs/sifts/index.html. The
Human Protein Structurome generated in this study has been made
available in the NetFlow3D GitHub repository39 [https://github.com/
haiyuan-yu-lab/NetFlow3D]. The protein mass spectrometry raw data
generated in this study have been deposited in MassIVE under acces-
sion code MSV000094298 [http://massive.ucsd.edu/ProteoSAFe/
dataset.jsp?task=9413e64fd9da4254924538fd8e265914], and in Pro-
teomeXchange under accession code PXD050561. Supplementary
Data and source data40 have been deposited in Zenodo under 10.5281/
zenodo.13755995. Source data40 are provided with this paper.

Code availability
NetFlow3D GitHub repository39 is available at https://github.com/
haiyuan-yu-lab/NetFlow3D. Version 1.0.0 was used for this study.
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