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Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged patients, defined 
as 65 years or older, for reasons that are currently unknown. To investigate the un-
derlying basis for this vulnerability, we performed multimodal data analyses on im-
munity, inflammation, and COVID-19 incidence and severity as a function of age. 
Our analysis leveraged age-specific COVID-19 mortality and laboratory testing from 
a large COVID-19 registry, along with epidemiological data of ~3.4 million individu-
als, large-scale deep immune cell profiling data, and single-cell RNA-sequencing data 
from aged COVID-19 patients across diverse populations. We found that decreased 
lymphocyte count and elevated inflammatory markers (C-reactive protein, D-dimer, 
and neutrophil–lymphocyte ratio) are significantly associated with age-specific 
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1  |  INTRODUC TION

Coronavirus disease 2019 (COVID-19), a global pandemic caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has been diagnosed in more than 284  million people 
globally, with 5.4 million deaths since December 2019 (data on 
December 30, 2021). Although a serious risk at any age, SARS-
CoV-2 infection is particularly debilitating and deadly for aged pa-
tients, defined in this study as 65 years and older (Channappanavar 
& Perlman, 2020; Clay et al., 2014; Davies et al., 2020; O'Driscoll 
et al., 2021). The molecular basis of this aging-related vulnerabil-
ity is an important area of investigation as it is currently poorly 
understood.

Impaired and dysregulated host immunities, including both 
innate and adaptive immunities, have been hypothesized as 
age-based factors in COVID-19 disease severity (Brodin, 2021; 
Channappanavar & Perlman, 2020). Compared to younger individu-
als with COVID-19, aged individuals show disrupted antigen-specific 
adaptive immunity to SARS-CoV-2, such as reduced coordination of 
CD4-CD8 T-cell responses (Rydyznski Moderbacher et al., 2020). In 
addition, aged individuals typically produce a less robust type I in-
terferon (IFN) response to flu virus infections (Molony et al., 2017), 
indicating compromised cellular antiviral defense in innate immu-
nity. Indeed, 13% of aged patients with life-threatening COVID-19 
display inborn errors in autoantibodies against type I IFN immu-
nity (Bastard et al., 2020). In addition, aberrant immunosenes-
cence and inflammation also play crucial roles in age-medicated 
COVID-19 morbidity and mortality (Domingues et al., 2020). For 
example, senescent cells become hyper-inflammatory in response 
to pathogen-associated molecular patterns, and senolytics reduce 
COVID-19 mortality in aged mice (Camell et al., 2021). Based on 
these findings, we sought to systematically identify whether there 
are specific immuno-inflammatory determinants that promote age-
associated COVID-19 severity.

2  |  RESULTS

2.1  |  Severe outcomes in aged COVID-19 patients

To begin, we investigated the prevalence of COVID-19 disease 
among different age groups with 9  months of data collection. 
Analysis of U.S. Centers for Disease Control (CDC) epidemiological 
data from March to December 2020 (Tables S1–S3) revealed that 
80.5% of fatal cases occurred in aged patients. Strikingly, this rate 
was 4.1 times higher than in 18–64  years old (19.5%), and 1653 
times higher than in 0–17  years old (0.05%, Figure 1a). Fatality 
prevalence was influenced by sex in both older and younger groups 
(Figure 1b). Interestingly, we found that average fatal percentage in 
aged COVID-19 patients is 16% higher than that of influenza (Flu) 
(Table S2), indicating that COVID-19 is more hazard for aged indi-
viduals than Flu.

Next, we used odds ratio (OR) adjusted for confounding factors 
to further evaluate the association between aging and four types 
of COVID-19 outcomes: hospitalization, intensive care unit (ICU) 
admission, ICU mechanical ventilation, and death. Specifically, we 
analyzed sex-  and race-adjusted OR values in 3,417,930 COVID-
19-positive cases (n = 2,369,919 in young individuals, 20–49 years 
old) and n  =  1,048,011 in aged individuals (>60  years old) (see 
Method; Table S3) from the U.S. CDC database. Here, aged individ-
uals showed significantly increased likelihood of COVID-19-related 
hospitalization (OR = 9.07, 95% confidence interval [CI] 9.99–9.15; 
Figure 1c), ICU admission (OR = 9.24, 95% CI 9.01–9.48), and death 
(51.15, 95% CI 49.86–52.47; Figure 1c).

To further account for disease comorbidities, we next computed 
OR across different age groups using a large COVID-19 registry da-
tabase with 12,651 aged (≥65 years) and 32,426 younger individuals 
(20–55  years old) (Figure 1c, Table S4, see Methods). Specifically, 
we tested the OR Model-2, which is adjusted for sex, race, smok-
ing, and five common disease comorbidities (Guan et al., 2020; Yang, 

COVID-19 severities. We identified the reduced abundance of naïve CD8 T cells with 
decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged se-
vere COVID-19 patients. Older individuals with severe COVID-19 displayed type I and 
II interferon deficiencies, which is correlated with SARS-CoV-2 viral load. Elevated 
expression of SARS-CoV-2 entry factors and reduced expression of antiviral defense 
genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID-19 in 
aged individuals. Mechanistically, we identified strong TGF-beta-mediated immune–
epithelial cell interactions (i.e., secretory-non-resident macrophages) in aged individu-
als with critical COVID-19. Taken together, our findings point to immuno-inflammatory 
factors that could be targeted therapeutically to reduce morbidity and mortality in 
aged COVID-19 patients.
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F I G U R E  1 Epidemiological data analysis between aged and younger COVID-19 patients. (a) The percentage of fatal cases of COVID-19 
and flu across three age groups. Data source from U.S. CDC. The upper panel shows the percentage of fatal cases of COVID-19 in the United 
States. Each dot in the boxplot represents one state. The lower panel shows the percentage of fatal cases of flu from 2010 to 2020. Each 
dot in the boxplot represents one flu season. Statistical p-value was computed by two-tailed paired t test. For details about CDC dataset, 
see Tables S1 and S2. (b) Sex differences in the percentage of fatal cases of COVID-19 across three age groups. (c) Odds ratio (OR) analysis 
of U.S. CDC and COVID-19 registry datasets. U.S. CDC dataset, “Younger” is defined as 20 to 49 years of age (n = 2,369,919), and ‘aged’ is 
defined as >60 years old (n = 1,048,011); COVID-19 registry dataset, “Younger” is defined as 18 to 55 years of age (n = 12,651), and ‘aged’ is 
defined as ≥65 years old (n = 32,426). OR >1 indicates aged COVID-19 patients with increased likelihood of hospitalization, ICU admission, 
and death. Two colors denote OR models with different adjusted confounders. Features of the COVID-19 registry dataset are shown in Table 
S3. (d) and (e) Boxplot show the lab testing values of five inflammatory markers between aged (>65 years, n = 1405) and younger (18 to 
55 years, n = 970) individuals. Adjusted p-value [q] was computed by Mann–Whitney U test with Benjamini–Hochberg (BH) multiple testing 
correction
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Zheng, et al., 2020) (hypertension, diabetes, coronary artery disease 
[CAD], asthma, chronic obstructive pulmonary disease [COPD], 
and emphysema). Here, we again found that aged individuals had 
significantly greater likelihood of COVID-19-related hospitalization 
(OR = 3.10, 95% CI 2.55–3.77), ICU admission (OR = 2.39, 95% CI 
1.78–3.22) (Figure 1c), and death (OR = 40.35, 95% CI 19.80–82.24). 
Subsequent Kaplan–Meier analysis further revealed an elevated 
cumulative hazard for hospitalization (p  <  0.0001, log-rank test; 
Figure S1a), including longer duration of hospitalization (average du-
ration = 8.9 days; p = 1.4 × 10−15, Mann–Whitney U test; Figure S1b), 
in COVID-19 patients. Taken together, our findings confirm an ele-
vated likelihood of severe outcomes in aged COVID-19 patients has 
compared with younger patients, even when adjusted for all possible 
confounding factors.

2.2  |  Elevated inflammatory responses in aged 
COVID-19 patients

As severe COVID-19 patients have been reported to have lower 
lymphocyte count (Yang, Liu, et al., 2020) and higher C-reactive 
protein (CRP) (Manson et al., 2020), we examined the Cleveland 
Clinic COVID-19 registry for differences in inflammatory biomark-
ers as a function of aging. Here, we found lower peripheral lympho-
cytes (adjusted p-value [q] <2.0 × 10−16, Mann–Whitney U test with 
Benjamini–Hochberg multiple test correction; Figure 1d) and higher 
circulating neutrophils in hospitalized aged COVID-19 patients 
(q  =  0.004; Figure 1d), compared with younger patients. We also 
found that the neutrophil–lymphocyte ratio (NLR), a marker of sys-
temic inflammation (Cai et al., 2021), was elevated in aged COVID-19 
patients (q < 2.0 × 10−16; Figure 1d). In addition, the inflammatory 
markers D-dimer (q < 2.0 × 10−16; Figure 1e) and C-reactive peptide 
(CRP) (q = 2.7 × 10−10; Figure 1e) were also significantly increased 
in hospitalized aged patients compared with hospitalized young 
COVID-19 patients. Those findings motivate us to inspect hetero-
geneities of immune cells using large-scale immune cell phenotypic 
profiles and single-cell transcriptomics datasets under a multimodal 
genomic analytic framework.

2.3  |  Elevated pro-inflammatory cytokine 
expression in aged COVID-19 patients

We next examined peripheral immune cell profiles (Takahashi et al., 
2020) of hospitalized aged and younger COVID-19 patients by que-
rying a publicly available dataset of 12 major immune cell types (% 
peripheral blood mononuclear cells [PBMCs]) and 32  T-cell sub-
types (% CD3, Table S5, see Methods). All markers and cell type/
subtype definitions are provided in the original study (Takahashi 
et al., 2020). There was no difference in abundance of the major im-
mune cell types (e.g., T cells, B cells, natural killer cells, and plasma-
cytoid dendritic cells [pDC]) between aged and young hospitalized 
COVID-19 patients, including those in the ICU (Figure 2a,c and 
Figure S2a). However, both young and aged COVID-19 patients with 
ICU admission had a lower proportion of T cells (younger, q = 0.001; 
older, q  =  0.003) and pDC (younger, q  =  0.009; older, q  =  0.004) 
(Figure 2a,c), as well as an elevated proportion of non-classic mono-
cytes (ncMono) (younger, q  =  0.003; older, q  =  0.014; Figure 2c), 
compared with non-ICU patients. Further analysis of deep pheno-
typing T-cell data revealed significantly fewer naïve CD8 T cells in 
hospitalized aged COVID-19 patients (q = 1.7 × 10−11; Figure 2b,d). 
Naïve CD8 T-cell-mediated homeostasis is an important component 
of antiviral defense (Kaech & Cui, 2012), and the naïve CD8 T-cell 
receptor repertoire is negatively correlated with age in COVID-19 
patients (Ren et al., 2021). Thus, reduced abundance of naïve CD8 T 
cells may be associated with COVID-19 severities in aged individuals.

We next turned to investigate the ratio of naïve vs. other T-
cell subsets and natural killer T (NKT) vs. natural killer (NK) cells 
(Figure 2e). We found that the ratio of CD8 naïve T cell with multiple 
CD8 T-cell subsets was significantly decreased in aged ICU individ-
uals compared with younger patients (Figure 2e). The ratio of CD8 
naïve T cell with memory CD8 T cell (Tem and Tcm) was significantly 
reduced in aged COVID-19 patients in both ICU and non-ICU. In 
particular, the ratios of CD8 naïve T cell with PD1-TIM3-CD8 T cell 
and CD38-HLA-DR CD8 T cell were significantly decreased in aged 
COVID-19 patients compared with younger patients in ICU, not in 
non-ICU. The gene PD1 and TIM3 are makers for CD8 T-cell exhaus-
tion, and an elevated PD1 in exhausting T cells was highly associated 

F I G U R E  2 Deep immune-profiling of aged and younger patients with COVID-19. (a) and (f) Scatterplots show the differential immune cell 
type (a) and cytokines (f) between ICU (n = 39 samples, aged n = 26, younger n = 13) versus non-ICU (105 samples, aged n = 68, younger 
n = 37) COVID-19 patients. The cell flow and cytokine profiling datasets were collected from a recent study (Takahashi et.al, 2020) (see 
Method). Y-axis and X-axis show the log2(Fold Change [FC]) in younger and aged subpopulations. The pairwise comparison group is ICU vs. 
non-ICU patients with COVID-19. Solid green dots denote significantly different cell types or cytokines in both younger and aged patients. 
Solid blue and orange dots denote significantly different cell types or cytokines in younger and aged patients, respectively. (b) and (g) 
Scatterplots show the differential immune cell type (b) and cytokines (g) in aged (n = 94 samples) versus younger (50 samples) COVID-19 
patients. Y-axis and X-axis show the log2FC in ICU and non-ICU subpopulations. The pairwise comparison group is aged vs. younger patients 
with COVID-19. Solid red dots denote significantly different cell types or cytokines in both ICU and non-ICU patients. Solid purple dots 
denote significantly different cell types or cytokines in non-ICU patients. (c) The abundance of major immune cell types in PBMC and (d) 
subtypes of CD8+ T cells in all CD3-positive cells. Statistical adjusted p-value (q) was computed by Mann–Whitney U test with BH multiple 
testing correction (e) Heatmap showing the ratio of naïve vs memory lymphocytes. Gradient color indicated the log2 fold change in average 
ratio between aged and younger in non-ICU or ICU subgroup, respectively. Black circle indicates q < 0.05. (h) The abundance of four 
cytokines changes between younger and aged COVID-19 patients in hospital, ICU, and non-ICU groups
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with severe COVID-19 (Neidleman et al., 2021). CD38 and HLA-DR 
are markers for CD8 T-cell activation, and an accumulated activation 
of HLA-DR is associated with severe COVID-19 (Neidleman et al., 
2021; Quinn et al., 2018). Altogether, reduced ratio of naïve CD8 T 
cells and CD8 memory T cell in severe COVID-19 (Figure 2e) could 
be explained by non-specific memory T-cell activation and dysfunc-
tional immune responses (de Candia et al., 2021) in aged individuals. 
Yet, the ratio of CD4 naïve T cells with other CD4 T sub-cell type 
and NKT with NK has no significant difference between aged and 
younger patients in both ICU and non-ICU.

Next, we compared the plasma profile of 71 cytokines and 
chemokines (Takahashi et al., 2020) between hospitalized aged 
and younger COVID-19 patients (Table S5). Historically, increased 
IL-6, IL-8, IL-10, and IL-27  levels have been associated with severe 
COVID-19 (Del Valle et al., 2020; Lu et al., 2021). Here, we found 
that elevated expression of IL-8 (also named CXCL8) and IL-27 in 
aged COVID-19 patients (q  =  0.013; Figure 2h). As IL-8 is a pro-
inflammatory cytokine via recruiting and activating neutrophils 
(Bickel, 1993), its elevation is consistent with our previously noted 
elevated neutrophil count and NLR in hospitalized aged COVID-19 
patients (Figure 1d). Furthermore, younger, but not aged, COVID-19 
ICU patients also showed elevated IL-10 (Figure 2h), a key feature of 
cytokine storm (Huang et al., 2020; Zhao et al., 2020). In addition, 
elevated IL-6 was observed in both younger (q = 0.020) and aged ICU 
patients, (q = 0.002), compared with non-ICU patients (Figure 2h). 
Altogether, severe COVID-19 patients show distinct age-related cy-
tokine profiles: (a) Aged COVID-19 patients in hospitalization have 
elevated level of IL-6, IL-8, and IL-27, while (b) younger patients with 
ICU have elevated IL-6 and IL-10 expression. These results indicate 
that heterogeneous inflammatory cytokine expression between 
aged and younger COVID-19 patients may mediate age-related hos-
pitalization and ICU admission.

2.4  |  Reduced naïve CD8 T cells in aged severe 
COVID-19 patients

Because we observed loss of CD8 naïve T cells and T effector mem-
ory cells in hospitalized aged COVID-19 patients (Figure 2 b, d), we 
examined a publicly available single-cell transcriptomic dataset of 
CD8 T cells from 25 severe/critical COVID-19 patients (aged n = 12; 
younger n  =  13) (Stephenson et al., 2021) in order to search for 
aging-related molecular mechanisms in a cell type-specific manner. 
Uniform Manifold Approximation and Projection (Becht et al., 2019) 
(UMAP) analysis revealed five distinct CD8 sub-clusters (Figure 3a 
and Figure S3) based on biomarkers provided from the original lit-
erature (See Method, Stephenson et al., 2021), including naïve CD8, 
T central memory (Tcm), Tem, CD8 proliferation, and CD8 terminal 
effector T cell (also designated as TEMRA, Thome et al., 2014). We 
found that aged and younger patients with severe COVID-19 showed 
age-dependent immune pathway profiles across five CD8 subtypes. 
For example, type I and II IFN signaling showed decreased effect in 
CD8 naïve T cells, CD8 Tem, and CD8 proliferation T cells isolated 

from PBMC in aged severe COVD-19 patients, not in younger pa-
tients (Figure 3b). In addition, the antigen processing and presenta-
tion pathway showed decreased effect in CD8 Tem and CD8 TEMRA 
in aged patients as well. Our finding indicates that type I and II IFN 
signaling and antigen processing and presentation pathways are 
age-related immune pathways associated with COVID-19 disease 
severity. Yet, Th17 cell differentiation pathway of CD8 TEMRA and 
exhaustion consensus of CD8 T proliferation cells were activated in 
both aged and younger patients with severe COVID-19.

We next turned to investigate the molecular network in CD8 
naïve T cells. Comparing to severe young COVID-19 patients, up-
regulated genes (q < 0.05, log-fold change >0.1) in CD8 naïve T cells 
from aged patients formed a network module (the largest connected 
component) in the human protein–protein interactome (Figure 3c). 
This age-specific network module was significantly enriched in sev-
eral pathways, including apoptosis (q = 0.013), human T-cell leukemia 
virus 1 infection (q = 0.013), and TNF signaling (q = 0.014; Figure 3c). 
In particular, the apoptosis gene cathepsin D (Cocchiaro et al., 2016) 
(CTSD) was highly expressed in naïve CD8 T cells from aged severe 
COVID-19 patients (q < 2.0 × 10−16). Down-regulated genes, such 
as interferon-stimulated genes IFITM3 and TRIM22, in CD8 naïve T 
cells from aged COVID-19 patients were enriched in type I and II IFN 
signaling pathways (Figure 3c). In addition, the transcription factor 
STAT1, an important downstream factor in type I and II IFN signaling 
pathways (Hu & Ivashkiv, 2009), was down-regulated in CD8 naïve 
T cells in aged COVID-19 patients (Figure 3c). Notably, the SARS-
CoV-1 NSP1 protein impedes type I and II IFN signaling (Matsuyama 
et al., 2020) by attenuating STAT1 phosphorylation (Wathelet et al., 
2007). Thus, IFN deficiencies in CD8 naïve T cells may contribute to 
increased severity of COVID-19 disease in aged patients.

2.5  |  Interferon deficiencies correlate with SARS-
CoV-2 viral load in aged patients

To further investigate the relationship between viral load and 
COVID-19 disease severity, we analyzed bulk RNA-seq data from 
nasopharyngeal samples (Lieberman et al., 2020) (see Methods). 
Consistent with our findings in naïve CD8 T cells, expression levels 
of IFNα genes (IFNA1, IFNA5, IFNA7, and IFNA8) were significantly 
decreased in aged patients with high viral load (Figure 4a). In addi-
tion, the expression of IFNG was decreased in aged patients with low 
viral load (Figure S4a). Notably, we found that the IFN-stimulated 
antiviral genes (Sadler & Williams, 2008), including IFIT1 and OAS1 
(2'-5'-oligoadenylate synthetase 1), were down-regulated in aged pa-
tients with a higher viral load (Figure 4b). Next, we performed gene 
set enrichment analysis (GSEA, see Methods) for differentially ex-
pressed genes in aged vs. younger individuals with a higher viral load 
and found downregulation of genes in the innate immune pathways 
(q < 0.05; Figure 4b) of RIG-I like receptor signaling, Toll-like recep-
tor signaling, and NOD-like receptor signaling in aged COVID-19 
patients. RIG-I-like receptors senses SARS-CoV-2 RNA and sub-
sequently type I IFN production (Onomoto et al., 2010); however, 
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F I G U R E  3 Single-cell transcriptome of CD8 T cells in aged COVID-19 patients. (a) UMAP plot displays five identified CD8 T-cell 
subpopulations. The single-cell transcriptomic dataset (25 of Severe\Critical COVID-19 patients, aged n = 12, younger n = 13) was collected 
from a recent study (Stephenson et al., 2021) (Table S1 and Method). (b) Pathway enrichment analysis across five CD8 T-cell subtypes. Black 
circle indicates q < 0.05. (c) A highlighted protein–protein interaction subnetwork for age-biased differentially expressed genes in CD8 naïve 
T cells from patients with critical COVID-19. The colors for nodes and edges represent different immune pathways
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SARS-CoV-2 has evolved several mechanisms to blunt IFN induction, 
including the direct targeting of MDA5 (melanoma differentiation-
associated protein 5), a RIG-I-like receptor, by the viral papain-like 
protease (PLpro) (Liu et al., 2021). Furthermore, IFN potently inhib-
its IL-8 expression (Aman et al., 1993) in viral infection, and we also 
showed that aged COVID-19 patients with high viral load exhibit 
elevated plasma IL-8 (p = 0.005, Mann–Whitney U test; Figure 4c). 
Notably, up-regulated genes in aged patients with high viral load 
were not enriched in immune pathways (Figure 4b and Figure S4b), 
indicating decreased immune ability in response to SARS-CoV-2 in-
fection. Taken together, our data show that IFN deficiency is associ-
ated with elevated SARS-CoV-2 viral load in aged patients.

2.6  |  Age-dependent increased expression of 
SARS-CoV-2 entry factors

We next investigated age-  and cell type-specific expression of 
SARS-CoV-2 entry factors using a single-cell RNA-sequencing data-
set (Chua et al., 2020) (scRNA-seq, see Methods) from nasal tissue 
of critical (n  =  11) and moderate COVID-19 patients (n  =  8, see 
Methods). In total, the scRNA-seq dataset contained 115,895 cells 
across 15 well-annotated cell types within two main cell populations: 
epithelial cells (six cell types) and immune cells (nine cell types).

We found that secretory and ciliated cells in aged COVID-19 
patients display reduced abundance of angiotensin-converting 
enzyme-2 (ACE2), a key SARS-CoV-2 docking receptor (Yan et al., 
2020) (Figure 4d). However, the more recently identified SARS-
CoV-2 docking receptor basigin (Wang et al., 2020) (BSG or CD147) 
was expressed in 95% of secretory cells in aged patients with crit-
ical COVID-19 (Figure 4d and Table S6); furthermore, BSG and 
CD147 showed elevated expression in Treg (regulatory T cell) and 
CD8 T cells (Figure 4d) as well. We also found that the S protein prim-
ing proteases TMPRSS2 (Hoffmann et al., 2020) and FURIN (Zhao 
et al., 2020) were highly expressed in epithelial cells in critical and 
moderate COVID-19, with no differences between aged and young 
patients (Figure 4d and Table S6). However, FURIN levels were in-
creased in several immune cell types, including Treg and CD8 T cells, 
in aged patients with critical COVID-19 (Figure 4d). Taken together, 
our results suggest that elevated expression of two SARS-CoV-2 
factors (BSG and FURIN) in Treg and CD8 T cells may contribute to 
the increased susceptibility of aged patients to COVID-19.

2.7  |  Increased immune–epithelial cell interactions 
in aged COVID-19 patients

To further investigate the immunological mechanisms underlying 
age-associated COVID-19 outcomes, we performed Gene-set en-
richment analysis (GSEA) to explore transcriptomic signatures on 22 
immune pathways across 15 cell types derived from nasal tissue (see 
Methods). Here, we observed distinct immune responses between 
older and younger individuals with critical or moderate COVID-19 
(Figure S6) in epithelial and immune cell types. We further used 
CellphoneDB (Efremova et al., 2020) to quantify ligand–receptor 
interactions between epithelial and immune cells and found an el-
evated number of significant ligand–receptor interactions involved 
in immune–epithelial interactions (q < 0.05, permutation test with 
BH multiple testing correction (Benjamini & Hochberg, 1995), Table 
S7) in aged patients with critical COVID-19 (Figure 5a). In addition, 
we also found a stronger immune–epithelial cell interaction network 
in aged patients. In particular, we noted that secretory-non-resident 
macrophages (nrMa) displayed the highest connection with other 
cell types in aged patients with critical COVID-19 (Figure 5a).

We next analyzed ligand–receptor interactions of secretory/
ciliated–immune cells in aged and younger patients with critical 
COVID-19 (Figure 5b). We found elevated expression of TGF-β 
genes (TGFB1, TGFB2, and TGFB3) and their interacting partners (i.e., 
TGFBR2 and TGFBR3, q < 0.05; Figure S7 and Table S7) in nrMa cells 
and Treg. Of note, TGF-β has previously been shown to regulate the 
chronic immune response to SARS-CoV-2 in severe COVID-19 pa-
tients (Ferreira-Gomes et al., 2021). Thus, TGF-β-mediated strong 
secretory and nrMa cell interaction may explain the longer duration 
of hospitalization in aged COVID-19 patients (Figure S1b).

We also observed distinct immune–epithelial cell interactions 
in younger COVID-19 patients. For example, secretory and CD8 T 
cells expressed high levels of several ligand–receptor pairs, including 
HLA-B–KIR3DL2, TNF–RIPK1, and TNF–PTPRS (q < 0.05, permuta-
tion test), and secretory and Neu cells highly co-expressed CXCL2/3 
and CXCR2 (q < 0.05, permutation test). In addition, we found that 
secretory/ciliated–CD8 T cells showed a similar IFNG–IFNGR pat-
tern, while the expression level in aged patients was much lower 
(Figure 5b). In particular, secretory/ciliated–CD8 T-cell interaction in 
younger patients showed strong IFNG–IFNGR interaction compared 
to aged patients with moderate COVID-19 (Figure S6). In summary, 
these observations revealed that immune–epithelial cell interactions 

F I G U R E  4 Analysis of SARS-CoV-2 viral load and related entry gene expression in nasal tissues. (a) Volcano plot showing the differential 
genes of bulk RNA-sequencing data in aged versus younger patients in high viral load nasal tissues. A publicly available bulk RNA-seq dataset 
of 147 nasal samples (Lieberman et al., 2020) was used, including 61 aged patients (high [n = 27] and low [n = 34] viral load) and 86 younger 
patients (high [n = 46] and low [n = 40] viral load). (b) Gene-set enrichment analysis (GSEA) of 22 immune pathways for differential genes of 
aged vs. younger in high or low viral load subgroups. The gradient color bar shows the NES score (see Method). NES score >0 and q < 0.05 
indicate that up-regulated differential expressed genes (DEGs) in aged vs. young are significantly enriched in immune pathways, while NES 
score <0 and q < 0.05 indicate down-regulated DEGs in aged vs. young are significantly enriched in immune pathways. Black dots denote 
q < 0.05. (c) Boxplot showing the lab testing data changes in aged and younger COVID-19 patients with high (>4.5 log10 RNA copies/ml) and 
low (<4.5 log10 RNA copies/ml) viral load(Pekosz et al., 2021; Yang, Jiang, et al., 2020). (d) SARS-CoV-2-related entry gene expression profile 
across 15 cell types of nasal tissue between aged and younger patients. The size of dot denotes the percentage of the positive cell which 
expressed the tested genes. The gradient color bar represents the z-score scaled average expression of genes in each cell type
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F I G U R E  5 Distinct epithelial-immune cell interaction profile in aged and younger patients with critical COVID-19. (a) Heatmap showing 
the total log-scaled interaction number between epithelial–immune cells in critical COVID-19 disease. Aged group, n = 3 patients, younger 
group, n = 5 patients. The cell–cell interaction network depicted all significant cell pairs in which the number of ligand–receptor interaction 
>50 (permutation test with BH multiple testing correction, q < 0.05). Edge size denotes the number of significant ligand–receptor 
interactions between two cell types. Different colors indicate the immune or epithelial cell types. (b) Dot plot showing significant ligand–
receptor interactions between epithelial–immune cell interaction in critical COVID-19 disease. The circle size indicates -log10(q), and gradient 
color bar shows the log2-scaled means of average expression of interacted cell pair
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are associated with critical COVID-19 in aged patients. In particular, 
reduced expression of IFNR signaling is associated with greater se-
verity of COVID-19 in aged individuals (Figure 4a).

3  |  DISCUSSION

This study provides a comprehensive analysis of immune profiles 
in aged and younger COVID-19 patients using large, electronic pa-
tient data from the CDC and the Cleveland Clinic Registry database. 
Previous epidemiologic studies have identified age as an important 
risk factor for severe COVID-19 (O'Driscoll et al., 2021; Williamson 
et al., 2020; Wingert et al., 2021), and our large COVID-19 registry 
data further confirmed the elevated likelihood of severe COVID-19 
in aged individuals even after adjusting for sex, race, smoking, 
and multiple disease comorbidities (Figure 1c). Using the available 
laboratory testing data at the Cleveland Clinic COVID-19 registry 
database, we found that aged severe COVID-19 patients showed 
elevated levels of D-dimer, CRP (Figure 1d), and NLR (Figure 1e). D-
dimer, CRP, and NLR are inflammatory markers associated with se-
verity and death in COVID-19 (Cai et al., 2021; Xu et al., 2020). These 
new findings that the increased incidence and severity of COVID-19 
are significantly associated with elevated inflammation motivate us 
to further identify age-related immune cell subpopulations using 
large-scale, single-cell transcriptomics data from the patients with 
varying degrees of biology and clinical characteristics of COVID-19.

Currently, Delta is the dominant variant of SARS-CoV-2 in the 
United States. Thus, we further inspected the odds ratio of hospi-
talization in COVID-19 patients who carried different variants from 
children to aged populations using the CDC dataset since 1 January 
2021 (Figure S1c). We found that younger COVID-19 patients carried 
Delta variant were significantly associated with the increased likeli-
hood of hospitalization. However, we observed no significant differ-
ence on hospitalization rate of COVID-19 patients in both children 
and aged groups during the Delta variant prevalence period. There 
are several possible explanations. Fully vaccinated rate of ≥65 years 
aged individuals (85.8%) is 15% higher than that of younger individ-
uals (70.3%) since 11 November 2021 (https://covid.cdc.gov/covid​
-data-track​er/#vacci​natio​ns_vacc-total​-admin​-rate-total). Children 
under 10  years have much lower incidence of COVID-19 (Irfan 
et al., 2021). Further investigation of unique immune mechanisms of 
children under the resilience of COVID-19 may provide novel age-
specific mechanisms in the future.

Via deep immune cell profiling data analysis, we identified dis-
tinct immune responses in younger and aged COVID-19 patients 
(Figure 6). For example, both younger and aged COVID-19 patients 
showed increased ncMono cells and elevated IL-6 (Figure 2 and 
Figure 6), while only aged COVID-19 patients displayed elevated 
plasma IL-8 and IL-27 (Figure 2h). IL-6 is a potential therapeutic 
target since it is a critical mediator of cytokine storm in COVID-19 
(Zhang, Wu, et al., 2020). However, a recent phase III clinical trial 
(NCT04320615) showed no reduced mortality in severe COVID-19 
patients treated with the anti-IL-6R monoclonal antibody 

tocilizumab (Rosas et al., 2021). Younger COVID-19 patients in 
the ICU also showed significantly higher IL-10 (Figure 2h). Our ob-
servations suggest that targeting IL-10 might reduce mortality in 
younger patients with severe COVID-19. Furthermore, an anti-IL-8 
drug (BMS-986253) is under testing for COVID-19 patients in a 
Phase 2 clinical trial (ClinicalTrials.gov Identifier: NCT04347226). 
Therefore, our findings suggested that age is an important biolog-
ical variable in evaluation of clinical benefits of anti-IL-8 interven-
tion trials.

We also found reduced lymphocytes in hospitalized aged 
COVID-19 patients (Figure 1d). In particular, the abundance of naïve 
CD8 T cells was decreased in aged patients with severe COVID-19 
(Figure 2d). Reduction of naïve CD8 T cell is a hallmark of immunose-
nescence in older individuals (Goronzy et al., 2015), and through 
scRNA-seq data analysis, we observed significant enrichment of up-
regulated apoptosis genes in CD8 naïve T cells from aged COVID-19 
patients. Mechanistically, the apoptosis driver gene CTSD (Cocchiaro 
et al., 2016) is significantly elevated in naïve CD8 T cells from aged 
severe/critical COVID-19 patients compared with younger patients 
(q < 2.0 × 10−16). Thus, modulation of CD8 naïve T-cell dysfunction, 
especially targeting apoptosis pathway (Chu et al., 2021), may pro-
vide a new treatment strategy for severe COVID-19 in aged patients.

IFN-mediated immunity provides initial rapid protection against 
viral infection (McNab et al., 2015), and about 3.5% of patients with 
life-threatening COVID-19  show genetic aberrations in the type I 
IFN pathway (Zhang, Bastard, et al., 2020). A recent genetic study 
in European ancestry revealed that the cis-protein quantitative trait 
loci (pQTL, rs4767027) in OAS1 (an IFN-stimulated gene) were sig-
nificantly associated with decreased likelihood of COVID-19 suscep-
tibility and severity (Zhou et al., 2021). Herein, we found that aged 
individuals with severe COVID-19 show reduced expression of type I 
IFN genes (Figures 3b,c, 4a, and 5b). Notably, aged patients with high 
SARS-CoV-2 viral load show reduced expression of OAS1 and IFNA1, 
IFNA5, and IFNA7 (Figure 4a) compared with younger patients. On 
the contrary, aged patients with high SARS-CoV-2 viral load have 
elevated expression of the pro-inflammatory cytokine IL-8 and de-
creased lymphocyte cell counts in plasma (Figure 4c), demonstrating 
dysregulation of cytokine responses that has been well described for 
COVID-19 (Acharya et al., 2020). Of note, the dysregulated cytokine 
response is likely the effect of a variety of immunomodulatory strat-
egies employed by SARS-CoV-2 that are used to manipulate specific 
signaling pathways that lead to cytokine induction such as the RIG-I-
like receptor pathway. Now, there are more than 40 ongoing clinical 
trials (https://clini​caltr​ials.gov/) to test interferon-related therapies 
for potential treatment of COVID-19. Our findings suggested that 
interferon-related therapies may provide more clinical benefits for 
older individuals with COVID-19.

Although aged adults show increased susceptibility to SARS-
CoV-2 infection compared to children (Davies et al., 2020), we did 
not find differences in SARS-CoV-2 viral load in the upper airways 
between younger and aged patients (Figure S8). Using large-scale 
scRNA-seq data analysis, we did find, however, that the SARS-
CoV-2 entry genes (ACE2, BSG, TMPRSS2, FURIN, and NPR1) 

https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total
https://clinicaltrials.gov/
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showed cell type-specific expression profiles in both aged and 
younger individuals. In aged patients with critical COVID-19, the 
expression of BSG was increased in secretory, nrMa and CD8 T 
cells, and elevated expression of FURIN was found in Treg and 
CD8 T cells. Thus, cell type-specific host factor expression may 
play an important role in age-mediated disease susceptibility and 
severity in COVID-19.

We also identified age-specific increases in immune–epithelial 
cell interactions. For example, we found strong TGF-β-mediated 
immune–epithelial cell interactions in aged severe COVID-19 pa-
tients (Figure 5b and Figure S7). TGF-β plays a crucial role in pulmo-
nary fibrosis (Khalil et al., 1991; Lee et al., 2001), which is a common 
complication in severe COVID-19 patients (Leeming et al., 2021). 
The nucleocapsid protein of SARS-CoV-1 also upregulates TGF-β 
expression (Zhao et al., 2008). Thus, TGF-β-targeted therapies may 
provide better clinical benefits for aged patients with COVID-19. 
We additionally identified receptor-interacting serine/threonine 
kinase 1 (RIPK1)-mediated immune–epithelial cell interactions (se-
cretory/ciliated–CD8  T-cell pairs) in younger patients with critical 
COVID-19. RIPK1 is a key mediator of inflammation (Mifflin et al., 
2020), and a RIPK1 inhibitor (SAR443122) has been tested in a phase 

I clinical trial (ClinicalTrials.gov Identifier: NCT04469621) to treat 
tissue damage resulting from inflammation in severe COVID-19 pa-
tients. Altogether, RIPK1 inhibitors (Riebeling et al., 2021) may offer 
a potential treatment for young COVID-19 patients, such as COVID-
19-related multisystem inflammatory syndrome in children (MIS-C) 
(Rowley, 2020).

Lastly, we acknowledge the potential limitations of our study. 
Although we inspected omics data from multiple tissues, includ-
ing PBMCs, plasma, and nasal tissues, additional analysis of other 
COVID-19 and aging relevant tissues, such as lung and brain, should 
be investigated in the future. In addition, our COVID-19 database 
and omics data were generated from acute COVID-19 patients, and 
identification of the underlying genetic and molecular basis of aging 
differences for long-haul COVID-19 patients will be an important 
area of future investigation (Sudre et al., 2021). As the inconsis-
tent correlation between RNA expression and protein expression 
(Buccitelli & Selbach, 2020), further investigation of differential 
protein expression of ACE2, BSG receptors, and the TGF-β using 
proteomics data is highly warranted in the future studies. Finally, 
investigation of COVID-19 vaccine responses between aged and 
young patients is also warranted in the future.

F I G U R E  6 Proposed mechanistic models for age-biased COVID-19 severity in aged individuals. Several age-related pathophysiologic 
immune responses are associated with disease susceptibility and severity in COVID-19: a) decreased lymphocyte count and elevated 
inflammatory markers (C-reactive protein [CRP], D-dimer, and neutrophil–lymphocyte ratio); b) elevated pro-inflammation cytokines IL-8, 
IL-27, and IL-6 in aged COVID-19 patients; c) reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes 
(i.e., IFITM3 and TRIM22) in aged individuals with severe COVID-19; d) type I interferon deficiency is associated with SARS-CoV-2 viral load 
in aged individuals; e) elevated expression of SARS-CoV-2 entry factors (BSG and FURIN) and reduced expression of antiviral defense genes 
(IFNAR1, OAS1, IFIT1) in the secretory cells of critical COVID-19 in aged individuals; f) strong TGF-beta-mediated immune–epithelial cell 
interactions (i.e., secretory—nrMa) in aged individuals with critical COVID-19
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4  |  E XPERIMENTAL PROCEDURES

“Younger” was defined as 18 to 55 years of age, and “aged” was de-
fined as ≥65 years old.

4.1  |  U.S. CDC COVID-19 epidemiological data

Publically accessible COVID-19 death counts in 54 states and ter-
ritories in United States were downloaded from the CDC Web site 
(https://data.cdc.gov/NCHS/Provi​siona​l-COVID​-19-Death​-Count​
s-by-Sex-Age-and-S/9bhg-hcku/data) on 23 December 2020 (Table 
S1). Publically accessible statistics of influenza mortality across 
10 flu seasons (November 2010–2020) in United States was down-
loaded from CDC Web site (https://catal​og.data.gov/datas​et/
death​s-from-pneum​onia-and-influ​enza-pi-and-all-death​s-by-state​
-and-regio​n-natio​nal-center-) on 20 June 2020. Both COVID-19 and 
influenza datasets include three age-stratified groups: 0–17 years, 
18–64 years, 65 years, and older. These datasets were used for epi-
demiological prevalence analysis of COVID-19 and influenza.

We collated U.S. COVID-19 Case Surveillance Public Use Data 
from the CDC website (https://healt​hdata.gov/datas​et/covid​
-19-case-surve​illan​ce-publi​c-use-data) from December 2019 to 28 
December 2020. This dataset includes age-stratified COVID-19 case 
counts in hospitalization, ICU admission, death, sex, and race. We 
extracted two age subgroups from all laboratory-confirmed cases 
using the following criteria: i) the age range of younger group from 
20 to 49 years and the age range of older group over than 60 years 
(Table S2); ii) deletion of all cases in which sex and race information 
was missing. In total, the younger subgroup includes 2,369,919 cases, 
with 94,161 in hospitalization, 9138 in ICU admission, and 6469 
death cases. The older subgroup has 1,048,011 cases in total, with 
243,109 in hospitalization, 29,671 in ICU admission, and 124,566 
death cases. This dataset was used to determine OR analysis.

4.2  |  COVID-19 registry database

We used institutional review board–approved COVID-19 registry 
data, including 45,077 individuals (12,651 aged patients and 32,426 
younger patients; Table S3) tested during March to December, 
2020 from the Cleveland Clinic Health System in Ohio and Florida. 
All tested samples were pooled nasopharyngeal and oropharyn-
geal swab specimens. Infection with SARS-CoV-2 was confirmed 
by RT-PCR in the Cleveland Clinic Robert J. Tomsich Pathology 
and Laboratory Medicine Institute. In total, 12,304 patients (aged 
n = 3559, younger n = 8745) tested COVID-19 positive by the end of 
December 2020. All SARS-CoV-2 testing was authorized by the Food 
and Drug Administration under an Emergency Use Authorization, in 
accord with the guidelines established by the Centers for Disease 
Control and Prevention.

The data in COVID-19 registry include COVID-19 test re-
sults, baseline demographic information, and all recorded disease 

conditions (Table S3). We conducted a series of retrospective studies 
to test the association of aging with COVID-19 outcomes, including 
hospitalization, ICU admission, mechanical ventilation, and death. 
Data were extracted from electronic health records (EPIC Systems), 
and patient data were managed using REDCap electronic data 
capture tools. To ensure data quality, a study team trained on uni-
form sources for the study variables manually checked all datasets. 
Statistical analysis for smoking, hypertension, diabetes, coronary 
artery disease asthma, and emphysema and COPD was calculated 
after missing value deletion.

4.3  |  Clinical outcome analysis

The OR was used to measure the association between COVID-19 
outcomes and aging based on logistic regression. An OR >1 indicates 
that aged patients are associated with a higher likelihood of the out-
come. To reduce the bias from confounding factors, we employed OR 
analysis in two datasets. For U.S. CDC datasets, the OR model was 
adjusted by sex and race, due to limited information of other con-
founding factors. However, in the COVID-19 registry, we adjusted 
for sex, race, smoking, hypertension, diabetes, coronary artery dis-
ease, asthma, emphysema, and COPD. The Kaplan–Meier method 
was used to estimate the cumulative hazard of hospitalization of 
COVID-19 patients across age groups. For hospitalization outcome, 
the time was calculated from the start date of COVID-19 symptoms 
to hospital admission date. Log-rank test was used for comparison 
across different age groups with Benjamini and Hochberg adjust-
ment (Benjamini & Hochberg, 1995). Cumulative hazard analysis 
was performed using the Survival and Survminer packages in R 3.6.0 
(https://www.r-proje​ct.org).

4.4  |  Public available COVID-19 multi-omics 
datasets used in this study

Detailed information of the list datasets shown in Table S1.

4.5  |  Two single-cell sequencing datasets

In this study, we used two COVID-19 single-cell datasets (Table S1). 
1) The CD8+ T-cell dataset (Stephenson et al., 2021) is a sub-dataset 
from original PBMC single-cell data. We re-analyzed 59,815 single-
cell transcriptomes of CD8  T cells, which revealed 5 distinct 
CD8 sub-clusters (Figure 3a), including CD8 naïve (CCR7+, LEF1+), 
Tcm (GZMK+, LTB+, CCR7−), Tem (GZMK+, CCR7−), CD8 proliferation 
(MKI67), and CD8 T terminal effector cell (also named CD8 TEMRA 
(Thome et al., 2014), HLA-DRB1+, GZMB+, GNLY+, LAG3+). 
Based on our aging criteria, the critical/severe COVID-19 patients 
were grouped to aged (n = 12) and younger patients (n = 13). 2) A 
single-cell dataset from nasal tissues (Chua et al., 2020) (European 
Genome-phenome Archive repository: EGAS00001004481) was 

https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku/data
https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-deaths-by-state-and-region-national-center
https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-deaths-by-state-and-region-national-center
https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-deaths-by-state-and-region-national-center
https://healthdata.gov/dataset/covid-19-case-surveillance-public-use-data
https://healthdata.gov/dataset/covid-19-case-surveillance-public-use-data
https://www.r-project.org
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from COVID-19-positive patients (11 critically ill patients and 
8 moderately ill patients). Based on our aging criteria, we extracted 
a subpopulation from the original cohort. The final COVID-19 co-
hort used in this study included 8 critically ill patients (5 younger 
and 3 older patients) and 7 moderately ill patients (4 younger and 
3 older patients). As the original dataset supplied cell type infor-
mation, additional analysis was based on cell type annotation. The 
dataset contained 115,895 cells across 15 cell types (B cell, Basal, 
Ciliated, Ciliated-diff, CD8 T cell, moDC, Neu, NKT, NKT-p, nrMa, 
rMa, Secretory, Secretory-diff, Squamous, and Treg).

4.6  |  Bulk RNA-sequencing dataset in nasal tissue 
(Lieberman et al., 2020)

The dataset was publically available from NCBI GEO database 
(GSE152075). Based on original meta-information, we extracted 
COVID-19-positive sample data with high or low viral load, deleting 
samples in which sex and age information were missing. 147 bulk 
RNA-seq samples were used in this study, including 61 aged patients 
(high viral load n = 27, low viral load n =34) and 86 younger patients 
(high viral load n = 46, low viral load n = 40).

4.7  |  SARS-CoV-2 viral load dataset (Fajnzylber et 
al., 2020)

We quantified SARS-CoV-2 RNA load from 5  specimen types, in-
cluding upper airway specimens (oropharyngeal swab [detectable 
percentage was 67%], nasopharyngeal [detectable percentage was 
50%], sputum [detectable percentage was 85%]), plasma [detect-
able percentage was 27%], and urine [detectable percentage was 
10%]). We selected hospitalized patients with at least one COVID-
19-positive test among upper airway or plasma specimens. Finally, 
72 patients were used for correlation analysis between age and viral 
loading. 43 patients (older patients n = 18, younger patients n = 25) 
with SARS-CoV-2 RNA detectable testing in upper airway were used 
to analyze the change of clinical inflammatory variables in both aged 
and younger groups. In our study, 54 patients tested positive for 
plasma SARS-CoV-2 RNA, including 21 patients with SARS-CoV-2 
RNA (aged patients n = 13). There were 35 SARS-CoV-2 RNA unde-
tectable patients (aged patients n = 7).

4.8  |  Circulating cell flow cytometry datasets 
(Takahashi et al., 2020)

This dataset included 12 major immune cell types as a percentage 
of PBMC and 32 T-cell subtypes as a percentage of CD3-positive 
cells through flow cytometry (Table S5). It also detected the plasma 
concentration of 71 cytokines through cytokine array. Based on 
our age criteria, the dataset included 81  hospitalized patients, 40 
with longitudinal data. When the second follow-up time of a patient 

was greater than 7  days, it was recorded as two samples. Hence, 
114 samples were analyzed, which included 94 older samples (non-
ICU n  =  66, ICU =  26) and 50 younger samples (non-ICU n  =  37, 
ICU = 13).

4.9  |  Single-cell sequencing data analyses

All single-cell data analyses and visualizations were performed 
with the R package Seurat v3.1.4 40. The data quality filtering 
was strictly followed by the original literature (Chua et al., 2020; 
Ren et al., 2021). “NormalizeData” was used to normalize the data. 
“FindIntegrationAnchors” and “IntegrateData” functions were used to 
integrate cells from different samples. Principal component analysis 
(PCA) and Uniform Manifold Approximation and Projection (UMAP) 
with 15 principal components were used. A resolution of 0.5 was used 
in “FindClusters()” step. “FindAllMarkers” function with the MAST 
test was employed as the finding maker method for each cell type.

4.10  |  Cell–cell interaction analysis

Cell–cell interaction analysis was based on normalized expression 
data of known ligand–receptor pairs in 15 cell types of nasal single-
cell sample. The analysis was performed by CellPhoneDB (Efremova 
et al., 2020) v2.1.4 (https://github.com/Teich​lab/cellp​honedb) based 
on the python 3.7 platform. Statistical analysis mode was used to 
identify significant ligand–receptor pairs in each cell number. A per-
mutation test (1000 randomizations) with BH multiple testing cor-
rection was used to evaluate the significance.

4.11  |  Bulk RNA-sequencing data analysis

All bulk RNA-sequencing data analysis started from raw counts 
value. R package edgeR (Robinson et al., 2010) v3.12 was used to 
analyze differentially expressed genes in older vs. younger groups. 
Correction for sex and batch effects was added into the formula 
of design model. Statistical significance p-values were adjusted by 
BH (q value) method (Benjamini & Hochberg, 1995). Differentially 
expressed genes were identified as adjusted p-value (q) <0.05 and 
log-fold change >0.5.

4.12  |  Immune gene set enrichment analysis

To evaluate the immune pathway profiles in young and aged 
COVID-19 patients, GSEA was conducted as previously described 
(Subramanian et al., 2005). Immune gene profiles were retrieved 
from the KEGG database (Kanehisa et al., 2017). We selected 22 
immune-related pathways and 1241  genes from KEGG belonging 
to the immune system subtype. For each cell type, we performed 
a GSEA on the list of differential expressed genes (DEGs) ranked by 

https://github.com/Teichlab/cellphonedb
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the log2FC. The normalized enrichment score (NES, Equation 1) was 
calculated for 22 immune pathways in young and aged specific gene 
sets (Figure 4b),

in which ES (Subramanian et al., 2005) denotes enrichment score. 
Normalization of the enrichment score reduced the effect of the 
differences in gene set size and in correlations between gene 
sets and the expression dataset. NES score >0 and q < 0.05 in-
dicate that up-regulated DEGs in aged vs. young are significantly 
enriched in immune pathways, while NES score <0 and q < 0.05 
indicate down-regulated DEGs in aged vs. young are significantly 
enriched in immune pathways. Permutation test (1000 times) was 
performed to evaluate the significance. All analyses were per-
formed with the prerank function in GSEApy package (https://
gseapy.readt​hedocs.io/en/maste​r/index.html) on Python 3.7 
platform.

4.13  |  Statistical analysis

Statistical tests for assessing categorical data through chi-square 
test and the two-tailed Mann–Whitney U test were used to com-
pare the difference in continuous variable by aged vs. younger. 
Spearman's ρ was assessed for correlation between two variables. 
Statistical significance level was set at q  <  0.05 and corrected by 
Benjamini–Hochberg (false discovery rate) method. All statistical 
analysis was performed by SciPy Statistics (https://docs.scipy.org/
doc/scipy/​refer​ence/stats.html#modul​e-scipy.stats).
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