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Network medicine links SARS-CoV-2/COVID-
19 infection to brain microvascular injury
and neuroinflammation in dementia-like
cognitive impairment
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Abstract

Background: Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection.
However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of
causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive
and therapeutic interventions.

Methods: In this study, we conducted a network-based, multimodal omics comparison of COVID-19 and neurologic
complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-
Cas9-based genetic assay results and compared network-based relationships therein with those of known neurological
manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/
nuclei RNA-sequencing) of Alzheimer’s disease (AD) marker genes from patients infected with COVID-19, as well as the
prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2.

Results: We found significant network-based relationships between COVID-19 and neuroinflammation and brain
microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD
biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed
relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In
addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and
antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was elevated in brain endothelial cells of AD patients and
healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in
COVID-19-mediated cognitive impairment. Overall, individuals with the AD risk allele APOE E4/E4 displayed reduced
expression of antiviral defense genes compared to APOE E3/E3 individuals.
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Conclusion: Our results suggest significant mechanistic overlap between AD and COVID-19, centered on
neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated
neurological manifestations and provide guidance for future development of preventive or treatment interventions,
although causal relationship and mechanistic pathways between COVID-19 and AD need future investigations.

Keywords: Alzheimer’s disease, Brain microvasculature, Cognitive impairment, COVID-19, Dementia, Network medicine,
Neuroinflammation, SARS-CoV-2, Single-cell/nucleus

Introduction
Patients with COVID-19 commonly develop neurologic
symptoms and/or complications, such as a loss of taste
or smell, stroke, delirium, and rarely new onset seizures
[1, 2]. Based on the experience with other coronaviruses,
it was predicted early on that COVID-19 patients might
also be at risk for cognitive dysfunction. For example,
after the severe acute respiratory syndrome (SARS-CoV-1)
outbreak in 2002 and the Middle East respiratory syndrome
(MERS) outbreak in 2012, both caused by human corona-
viruses (HCoVs), 20% of recovered patients reported on-
going memory impairment [3]. Evidence now supports
similar complications after COVID-19, which due to the
global pandemic, is poised to potentially lead to a surge in
cases of Alzheimer’s-like dementia or other forms of neuro-
cognitive impairment in the near future [4–8].
On the one hand, individuals with dementia (vascular

dementia, presenile dementia, and Alzheimer's disease,
etc.) were shown to have elevated risks for COVID-19
compared to those without dementia [9]. COVID-19
patients with dementia have elevated mortality rate
[10, 11], and the most frequent symptoms included
hypoactive delirium and functional status worsening
[11]. On the other hand, COVID-19 may lead to cognitive
impairments, such as shown by poor neuropsychological
assessments [4, 12] or shown by behaviors or symptoms
such as agitation, confusion, inattention, and disorienta-
tion [13]. COVID-19 patients admitted to intensive care
unit (ICU) have elevated frequency of delirium [14]. In a
recent study of a large cohort of more than 236,000
COVID-19 survivors, it was shown that the survivors who
required hospitalization, ICU admission, or had encephal-
opathy during COVID-19 had elevated risks of neuro-
logical and psychiatric disorders [8]. Another study using
73,000 non-hospitalized COVID-19 survivors shows vari-
ous incident sequalae, such as mental health disorders and
neurocognitive disorders [15]. Jaywant et al. reported that
of 57 recovering COVID-19 patients referred for neuro-
psychological evaluation before hospital discharge, 81%
had cognitive impairment, including mild, moderate, and
severe cognitive impairment [16].
Clarification of the underlying molecular mechanisms

of COVID-19-induced cognitive impairment is mandatory
for developing effective therapeutic strategies for patients
[9, 17, 18]. While some studies have shown that SARS-

CoV-2 may directly infect the brain [19–21], potentially
through the olfactory bulb [19], others have shown that
SARS-CoV-2 is absent from the brain [22] and cerebro-
spinal fluid (CSF) [13]. COVID-19 has also been suggested
to cause inflammation within the central nervous system
(CNS) [18, 22, 23], as well as microvascular injury [22].
For example, the SARS-CoV-2 spike protein, which read-
ily crosses the blood-brain barrier (BBB) [24, 25], induces
an inflammatory response within microvascular endothe-
lial cells, leading to BBB dysfunction [25].
Multi-omics datasets for patients with COVID-19,

such as bulk and single-cell/nucleus transcriptomic [26],
proteomic [27], and interactomic (protein-protein inter-
actions [PPIs]) datasets [28–32], have been generated in
order to conduct unbiased investigation of the patho-
physiological pathways. We reasoned that network-based
drug-disease and disease-disease proximity approaches
[33–36], which shed light on the relationship between
drugs (and drug targets) and diseases (gene and protein
determinants of disease mechanisms in the human PPI
network), would provide mechanistic insights into the
pathobiology of cognitive dysfunction after SARS-CoV-2
infection, potentially suggesting novel targets for further
therapeutic investigation. Thus, we investigated Alzheimer’s
disease (AD)-like pathobiology associated with SARS-CoV-
2 infection by using a network-based multimodal omics
analytic methodology (Fig. 1). Specifically, we leveraged
bulk and single-cell/nuclei RNA-sequencing, proteomics,
and interactomics (SARS-CoV-2 virus-host PPIs from mass
spectrometry assays and genetic interactions from CRISPR-
Cas9 assays) from COVID-19 and AD patients. We hypoth-
esized that SARS-CoV-2 host factors would be localized in
a subnetwork within the comprehensive PPI network and
that proteins associated with certain neurologic function
would be targeted by the virus either directly, or indirectly
through PPIs with virus host factors. As detailed below, our
comprehensive analyses show scant evidence of direct brain
and neuron damage by COVID-19, but robust evidence for
involvement of pathways of neuroinflammation and brain
microvascular injury in COVID-19.

Materials and methods
SARS-CoV-2 host factor profiles
In total, we have gathered ten datasets of SARS-CoV-2
(and other HCoVs) target host genes/proteins from
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various data sources (Table S1). Specifically, six of these
datasets were based on CRISPR-Cas9 assay results, in-
cluding (1–2) CRISPR_A549-H and CRISPR_A549-L,
based on high (-H) and low (-L) multiplicity of infection
of SARS-CoV-2 in A549 cells [30]; (3–5) CRISPR_HuH7-
SARS2, CRISPR_HuH7-229E, CRISPR_HuH7-OC43, based
on HuH7 cells infected by SARS-CoV-2, HCoV-229E, and
HCoV-OC43, respectively [31]; and (6) CRISPR_VeroE6,
based on SARS-CoV-2-infected VeroE6 cells [32]. For the

CRISPR-Cas9-based datasets, we considered the top-100
host factors using the ranking methods described in the re-
spective original publications [30–32]. We also examined
the effect of using top-50, -150, and -200 genes. In addition
to the CRISPR datasets, we collected three mass
spectrometry-based virus-host PPI datasets [28, 29] for
SARS-CoV-2, SARS-CoV-1, and MERS-CoV, named as
SARS2-PPI, SARS1-PPI, and MERS-PPI. The last dataset,
HCoV-PPI, was from our recent studies [37, 38] containing

Fig. 1 A diagram illustrating a network-based, multimodal omics analytic framework. We examined the transcriptomes (both bulk and single-cell
or single-nucleus) of patients with COVID-19 (blood and cerebrospinal fluid [CSF] samples) or Alzheimer’s disease (AD) (brain samples). We also
compiled ten SARS-CoV-2 host (human) factor datasets based on CRISPR-Cas9 assays or protein-protein interaction assays, AD blood and CSF
markers, and neurological disease-associated genes/proteins. Using network proximity analysis in the human protein-protein interactome, we
investigated network-based associations between SARS-CoV-2 host factors and several selected neurological diseases. To understand the potential
mechanisms through which SARS-CoV-2 affect the brain, including direct brain invasion, neuroinflammation, and microvascular injury, we
examined (1) the expression changes of AD markers in COVID-19 patients, (2) the expression of SARS-CoV-2 host factors in AD patients and
healthy individuals at tissues, brain regions, and single-cell/nucleus levels. These transcriptomic analyses were accompanied by network analysis
to uncover the potential mechanisms (key genes or pathways) involved in protein-protein interactions. We also compared the susceptibility of
SARS-CoV-2 infection among AD patients with different APOE genotypes using the single-nucleus transcriptomic datasets
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HCoVs target host proteins supported by literature-based
evidence. Functional enrichment analyses, including Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) biological process enrichment analyses,
were performed using Enrichr [39] for the CRISPR datasets.
A list of main SARS-CoV-2 entry factors and proteins in-
volved in antiviral defense was assembled [18], including
ACE2, BSG, NRP1, TMPRSS2, TMPRSS11A, TMPRSS11B,
FURIN, CTSB, CTSL, LY6E, IFITM1, IFITM2, IFITM3,
IFNAR1, and IFNAR2.

Neurological disease gene profiles
We extracted neurologic disease-associated genes/proteins
from the Human Gene Mutation Database (HGMD) [40]
and defined a gene to be disease-associated, if it had at
least one disease-associated mutation from HGMD re-
ported in the literature. The details of these neurological
disease genes can be found in Table S2, including the
reported mutations, disease terms used to identify the
neurological diseases [41], and original references. For
AD, we assembled four datasets from AlzGPS [42], based
on our previous work [43] (Table S2). These datasets con-
tain experimentally validated genes (denoted as “seed”
genes) in amyloid pathology (amyloid) or tauopathy (tau),
as well as high-confidence AD risk genes identified by
genome-wide association study (GWAS) [44].

Alzheimer's disease blood and CSF markers
We compiled a list of AD blood and CSF protein markers
from previous studies [45–47], which included 29 blood
markers and 31 CSF markers. The expression alteration of
these markers in AD or AD-related pathologies, such as
tauopathy, were extracted from these studies. The details
of these markers can be found in Table S3.

Transcriptomic data analyses
Two categories of transcriptomic datasets, including three
from AD patients and three from COVID-19 patients,
were used (Table S4). These datasets are described below.
All single-cell analyses were performed using Seurat v3.1.5
[48] following the processing steps from the original pub-
lication of each dataset. Cell types were identified using
markers based on the original publications, unless already
annotated in the metadata. Differential expression analysis
was performed using the “FindMarkers” function from
Seurat for the single-cell/nuclei datasets. For the bulk
RNA-sequencing dataset, differential expression analysis
was performed using edgeR v3.12 [49]. Differentially
expressed genes (DEGs) were determined by false discov-
ery rate (FDR) < 0.05 and |log2foldchange| > 0.5.

GSE147528
This single-nuclei RNA-sequencing dataset from the
superior frontal gyrus and entorhinal cortex regions of

10 males with varying stages of AD [50] was used to
examine the expression of the four key SARS-CoV-2 entry
factors: ACE2, TMPRSS2, FURIN, and NRP1, in neurons.

GSE157827
This single-nuclei RNA-sequencing dataset from the
prefrontal cortex region of 12 AD patients and 9 normal
controls [51] was used to test the susceptibility of brain
endothelial cells to SARS-CoV-2 infection and damage.
Six cell types were included: astrocytes, endothelial cells,
excitatory neurons, inhibitory neurons, microglia, and
oligodendrocytes. The APOE genotypes of these individ-
uals are also available in this dataset.

GSE138852
This single-nuclei RNA-sequencing dataset from the en-
torhinal cortex of individuals with AD (n = 6) and
healthy controls (n = 6) [52] was used to validate the
findings of the expression of SARS-CoV-2 entry factors
in brain endothelial cells. Six cell types were included:
astrocytes, endothelial cells, neurons, microglia, oligo-
dendrocytes, and oligodendrocyte progenitor cells.

GSE157103
This bulk RNA-sequencing dataset of 125 peripheral
blood mononuclear cell (PBMC) samples [53] was used
to examine the expression spectrum of AD blood
biomarkers. DEGs were analyzed by disease severity
conditions: 66 intensive care unit (ICU) patients (n = 50
COVID-19 patients vs. n = 16 non-COVID-19 patients),
59 non-ICU patients (n = 49 COVID-19 patients vs. n = 10
non-COVID-19 patients), and all 125 patients. Adjustments
for the effects of age and sex were made.

GSE149689
This single-cell RNA-sequencing PBMC dataset of 6
samples from severe COVID-19 patients, 4 samples from
mild COVID-19 patients, and 4 samples from healthy
controls [54] was used to examine the expression
spectrum of AD blood markers. 13 cell types were in-
cluded in this dataset: lgG− B cells, lgG+ B cells, CD4+ T
cell effector memory (EM)-like cells, CD4+ T cell non-
EM-like cells, CD8+ T cell EM-like cells, CD8+ T cell
non-EM-like cells, dendritic cells, monocytes, intermedi-
ate monocytes, nonclassical monocytes, natural killer
cells, platelets, and red blood cells.

GSE163005
This single-cell RNA-sequencing CSF dataset [55] was
used to examine the expression spectrum of AD CSF
markers. This neuro-COVID-19 dataset contains 8
COVID-19 patients, 9 multiple sclerosis (MS) patients, 9
idiopathic intracranial hypertension (IIH) patients, and 5
viral encephalitis (VE) patients. Based on the original
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publication, the cells were categorized into three major
cell groups of T cells, dendritic cells, and monocytes. Four
comparisons were performed for each major cell group:
COVID-19 vs. MS, COVID-19 vs. IIH, COVID-19 vs. VE,
and COVID-19 vs. non-COVID-19 (MS, IIH, and VE).

Human protein-protein interactome
The human protein-protein interactome was from our
previous studies [33, 34, 56, 57], and contains 17,706
protein nodes and 351,444 unique PPI edges. Each PPI
edge has one or more source information of five categor-
ies of evidence from publicly available databases and
datasets: protein complexes identified by robust affinity
purification-mass spectrometry from BioPlex V2.016
[58]; binary PPIs discovered by high-throughput yeast
two-hybrid systems in three datasets [33, 59, 60]; signaling
networks revealed by low-throughput experiments from
SignaLink2.0 [61]; low-throughput or high-throughput ex-
periments uncovered kinase-substrate interactions from
KinomeNetworkX [62], Human Protein Resource Database
(HPRD) [63], PhosphoNetworks [64], PhosphositePlus [65],
DbPTM 3.0 [66], and Phospho.ELM [67]; and PPIs curated
from literatures identified by yeast two-hybrid studies, affin-
ity purification-mass spectrometry, low-throughput experi-
ments, or protein three-dimensional structures from
BioGRID [68], PINA [69], Instruct [70], MINT [71], IntAct
[72], and InnateDB [73]. Inferred PPIs derived from evolu-
tionary analysis, gene expression data, and metabolic associ-
ations were excluded.

Network analyses
We used network proximity metrics to quantify the net-
work associations of two gene/protein modules. The “short-
est” proximity measure was used to evaluate the overall
average distance among all genes in the neurological dis-
ease gene sets and the SARS-CoV-2 host factor profiles:

dS
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Aj jj j � Bk k

X

a∈A;b∈B

d a; bð Þ ð1Þ

where d(a, b) represents the shortest path length be-
tween gene a from module A and b from module B in
the human protein-protein interactome. “closest” prox-
imity measure was used to quantify the distance among
the AD markers and the DEGs from the COVID-19
omics datasets focusing on the genes that are closest to
the genes in the other module:
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All network proximities were converted to Z scores
based on permutation tests of 1000 repeats:

ZdAB ¼
dAB−dr

σr
ð3Þ

where dr and σr are the mean and standard deviation
of the proximities, respectively. In each degree-
controlled permutation test, two protein sets were ran-
domly selected which had similar degree distribution to
that of the original two protein sets to reduce the effect
of degree biases based on our previous studies [33, 38,
56]. A P value was computed using the permutation test
accordingly. P values were corrected for FDR at 0.05.
Gene set pairs with FDR < 0.05 and Z < − 1.5 were con-
sidered significantly proximal.
The largest connect component (LCC) was computed

by NetworkX [74]. Significance of LCC was computed in
the same way as the network proximity using permuta-
tion test repeated 1000 times. Eigenvector centrality [75]
of the nodes in the networks was computed using Gephi
0.9.2 [76] to evaluate the influence of the nodes consid-
ering the importance of their neighbors.

Tissue and brain region expression specificity
We retrieved the transcriptomic data in raw count and
transcripts per million (TPM) from the GTEx v8 release
[77] for 33 human tissues and 13 brain regions, and
examined expression across different tissues and brain
regions. At the tissue level, the brain regions were
combined as one “brain” tissue. We first defined a gene
to be tissue- or brain region-expressed if it had a count
per million (CPM) ≥ 0.5 in over 90% samples. Then, to
quantify the significance of the expression of a gene in a
tissue or brain region, we normalized its expression
using the z score method.

Innate immune genes
We retrieved a list of 1031 human innate immunity
genes from InnateDB [73], which were associated in the
published literature with roles in innate immunity.

Statistical analysis and network visualization
Python package SciPy v1.3.0 [78] was used for the
statistical tests unless specified otherwise. P < 0.05 (or
FDR < 0.05 when applicable) was considered statistically
significant throughout the study. Networks were visualized
with Gephi 0.9.2 [76] and Cytoscape 3.8.0 [79].

Results
A network-based, multimodal omics analytic framework
In this study, we present a network-based, multimodal
omics (including bulk and single-cell/nuclei RNA-
sequencing, proteomics, and interactomics) analysis
method for investigating the underlying mechanisms of
COVID-19-associated cognitive dysfunction or impairment.
We hypothesized that for COVID-19 to have neurological
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impacts in the host CNS, its host factors (genes/proteins)
should be localized in the corresponding subnetwork within
the human PPI network, and either directly target the
neurological disease-associated genes/proteins or indirectly
affect them through PPIs (Fig. 1). We utilized single-cell/
nuclei RNA-sequencing data from both COVID-19 patients
with neurological manifestations (neuro-COVID-19) and
brains of AD patients not infected by SARS-CoV-2, brain-
region-specific gene expression data from the GTEx
database [77], SARS-CoV-2 virus-host PPIs from mass
spectrometry assays, genetic interactions from CRISPR-
Cas9 assays (Table S1), and disease-related genetic data
(Table S2).
We compiled ten virus-host interaction datasets across

SARS-CoV-2, SARS-CoV-1 and MERS-CoV, and other
common HCoVs, including six datasets from CRISPR-
Cas9 assays and four datasets for virus-human PPIs
(Table S1). Functional enrichment analyses of each
dataset revealed that virus-host PPIs and host factors are
significantly enriched in pathways well-known to be
involved in SARS-CoV-2 infection and related immune
responses (Supplementary Results, Fig. S1). Using these
datasets, we computed their network associations with
ten neurological diseases or conditions. To determine
whether brain damage was caused by SARS-CoV-2 dir-
ect infection of the brain, we evaluated expression levels
of SARS-CoV-2 entry genes at brain region and brain
single-cell levels. Neuroinflammation was evaluated by
identifying alterations in expression of AD blood and
CSF biomarkers in COVID-19 patients using data from
peripheral blood mononuclear cell (PBMC) and CSF
samples (neuro-COVID-19 dataset). Lastly, microvascu-
lar injury was evaluated by examining the expression of
SARS-CoV-2 entry factors and antiviral defense genes in
brain endothelial cells of AD and healthy control sam-
ples. We also compared the expression of SARS-CoV-2
entry factors and antiviral defense genes in individuals
with different APOE genotypes.

Strong network-based relationships of COVID-19 to
neurological manifestations
We assembled experimentally validated gene/protein
profiles for ten neurological diseases or conditions,
including AD, amyotrophic lateral sclerosis, cognitive
decline, dementia, frontotemporal dementia, multiple
system atrophy, neuronal ceroid lipofuscinosis, Parkinson’s
disease (PD), spinal muscular atrophy, and spinocerebellar
ataxia (Table S2). First, we quantified the network distance
of the SARS-CoV-2 host factor datasets and neurological
diseases in the human protein-protein interactome. A close
network distance between SARS-CoV-2 host factors and
neurological disease-associated genes/proteins suggests re-
lated or shared mechanistic pathways between COVID-19
and a specific neurological disease [38]. Using state-of-the-

art network proximity measures (see the “Materials and
methods” section), we evaluated the network-based
relationship for the gene/protein sets between virus-host
factors and each disease/condition under the human inter-
actome network model (Fig. 2a and Fig. S2). We found sig-
nificant proximities between the SARS-CoV-2 virus-host
interactome (including PPIs and genetic interactions) and
genes associated with neurological diseases in the human
interactome network (average Z = − 1.82). The SARS-CoV-
2 virus-host PPIs (average Z = − 2.54) showed more signifi-
cant network proximities (white circles, Fig. 2a) compared
to CRISPR-Cas9-derived host factors (average Z = − 1.34).
The top three neurological diseases or conditions with the
smallest network proximities to SARS-CoV-2 were AD
(average Z = − 2.75) [9, 17], cognitive decline (average Z =
− 2.77), and PD (average Z = − 2.94). Recent case reports of
COVID-19 patients developing parkinsonism suggest that
COVID-19 patients may have an increased risk of PD later
in life [80]. We noticed that amyloid pathology has signifi-
cant network proximity (average Z = -1.55) with the PPI
datasets. However, there are no significant network-based
relations between tauopathy-related genes and the SARS-
CoV-2 interactome. One possible explanation is the
incompleteness of genes/proteins related to tauopathy in
the datasets. In addition to SARS-CoV-2, HCoV-229E also
showed a significant network proximity to neurological
diseases, suggesting a common association between corona-
viruses and cognitive dysfunction [81].

A network-based relationship between COVID-19 and
Alzheimer’s disease
To examine further why cognitive impairment has such
significant network-based association with the SARS-
CoV-2 interactome, we focused on AD and visualized
the PPIs among AD seed genes/proteins (Fig. 2b, green
nodes) and host genes/proteins illustrated by the four
SARS-CoV-2 virus-human PPI datasets (Fig. 2b, blue
nodes). We found a large number of PPIs among these
proteins, including multiple blood and CSF biomarkers
and SARS-CoV-2 entry factors (nodes with gene sym-
bols). Here, we discuss several markers that may have
important roles in COVID-19-associated AD (Table S5)
according to network measures (connectivity and eigen-
vector centrality [EC]), including vascular cell adhesion
protein 1 (VCAM1) (connectivity K = 73), ras-related
protein Rab-7a (RAB7A) (K = 30), and transforming
growth factor beta 1 (TGFB1) (K = 10). These proteins
have high EC values, a measure of potential node (gene/
protein) influence on the network that considers the in-
fluence of its neighbors: VCAM1 EC = 0.59 (rank 6 out
of 153 AD genes/proteins), RAB7A EC = 0.17 (rank 25),
and TGFB1 EC = 0.19 (rank 22).
VCAM1 is located at the endothelial cell surface and

is activated by cytokines [82]. It is also an AD biomarker
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with elevated expression in the blood [83, 84] and CSF
[45, 46] of AD patients. VCAM1 levels were also signifi-
cantly associated with the severity of dementia and struc-
ture changes of white matter [84], and brain endothelial
VCAM1 at the blood-brain barrier has been proposed as a
target for treating age-related neurodegeneration [85].
Serum VCAM1 levels were also significantly elevated in
severe COVID-19 patients compared to mild patients and

controls, and significantly decreased in the convalescence
phase compared to severe patients [86]. Notably, VCAM1
also plays an important role in COVID-19-induced vascu-
litis [87]. RAB7A is a direct target of non-structural pro-
tein 7 (nsp7) of SARS-CoV-2 [29], and also one of the top
host factors in CRISPR-Cas9-based SARS-CoV-2 datasets.
RAB7A knockout reduces cell surface angiotensin-
converting enzyme 2 (ACE2) levels, which thereby reduces

Fig. 2 A network landscape of COVID-19 and neurological diseases. a Network proximity analysis shows strong network associations between
COVID-19 and neurological diseases. Heatmap shows the “shortest” network proximities in Z score (see the “Materials and methods” section).
Smaller Z scores indicate smaller network proximities between the two gene sets. b Protein-protein interaction network of the SARS-CoV-2 and
other human coronaviruses host factors and the Alzheimer’s disease-associated genes/proteins. SARS-CoV-2 entry factors, antiviral defense genes,
and AD biomarkers are highlighted by their gene symbols
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SARS-CoV-2 entry into cells [30]. RAB7A is also a poten-
tial AD biomarker whose blood expression level is posi-
tively associated with high memory test performance [47].
TGFB1 is a cytokine that controls cell growth and differ-
entiation [88, 89] and a potential AD marker with
decreased expression in the blood of AD patients [47].
The anti-inflammatory and neuroprotective role of
TGFB1 against AD has already been demonstrated in ani-
mal models [90, 91]. Using bulk RNA-sequencing data
from PBMC samples of COVID-19 patients, we also found
that TGFB1 expression was significantly decreased in both
mild COVID-19 patients and those requiring ICU level
care, as compared to non-COVID-19 patients (Table S3).
Altogether, these results encouraged us to explore fur-

ther the pathological relationships between COVID-19
and AD and to identify potential pathological pathways
by which SARS-CoV-2 infection could lead to AD-like
dementia.

Neuroinflammation-mediated association between neuro-
COVID-19 and AD
We next turned to investigate whether neuroinflamma-
tion was a shared mechanism between COVID-19 and
AD by investigating the expression levels of well-known
AD blood and CSF marker genes in COVID-19 patients
with neurological manifestations (neuro-COVID-19). To
this end, we compiled a list of blood and CSF protein
markers for AD from previous studies [45–47] (Table S3)
with their expression alterations in AD or AD-related
pathologies. We then examined their expression in
COVID-19 patient PBMC [53, 54] and CSF [55] samples.
We performed differential expression analyses for the
PBMC bulk RNA-sequencing dataset [53] of COVID-19
patients vs. non-COVID-19 patients. For the other single-
cell level PBMC dataset [54], we compared mild / severe
COVID-19 patients to healthy controls. We used an
additional single-cell RNA-sequencing dataset generated
from CSF samples of neuro-COVID-19 patients with well-
defined neurological manifestations [55].
We first examined the degree of overlap between AD

markers and differentially expressed genes (DEGs) in
PBMCs or CSF from COVID-19 patients and found sig-
nificant overlap in CSF monocytes (FDR = 0.015, Fisher’s
exact test, Table S3), but not in PBMCs (FDR = 1.00,
Table S3). We further computed the network proxim-
ities of the AD markers and DEGs and found that blood
markers and DEGs from PBMCs do not show significant
network proximities, whereas CSF markers and DEGs
from CSF monocytes were significantly proximal (Table S3,
Z = − 3.69, FDR = 0.009). We also examined the overlaps
of the immune genes in the protein markers and the DEGs
and found that the CSF markers (immune genes) still have
strong overlap and close network proximity to the CSF
monocyte DEGs (immune genes) in COVID-19 (Fisher’s

exact test FDR = 0.035; network proximity Z = − 4.39, FDR
< 0.001) compared to blood protein markers and blood
DEGs (Fisher’s exact test FDR = 1.00, proximity Z = − 2.16,
proximity FDR = 0.020). Altogether, we found a more sig-
nificant network-based relationship between COVID-19
and AD in CSF (including monocytes) compared to
PBMCs from COVID-19 patients. We next examined the
overall expression spectrum of these markers in both
PBMCs and CSF (Fig. 3a, b).
In PBMCs, the expression of several AD markers was

altered by SARS-CoV-2 infection, such as TGFB1,
SERTA domain-containing protein 3 (SERTAD3), gluta-
thione S-transferase M3 (GSTM3), kinase D-interacting
substrate of 220 kDa (KIDINS220), natural killer tumor
recognition sequence (NKTR), arylsulfatse B (ARSB), and
insulin-like growth factor 1 (IGF1) (Fig. 3a). Some of the
markers have expression changes in the same direction
in COVID-19 and AD or AD-related pathologies, includ-
ing TGFB1, GSTM3, and NKTR. Using the PBMC sin-
gle-cell RNA-sequencing data, we found that
prostaglandin-endoperoxide synthase 2 (PTGS2) and period
circadian regulator 1 (PER1) were significantly elevated in
monocytes (Fig. S3) of severe COVID-19 patients. PTGS2
expression was also elevated in the bulk PBMC dataset,
although not significantly. PER1 is a circadian clock gene
involved in AD [92]. In the CSF, several AD markers were
also altered, such as secreted phosphoprotein 1 (SPP1), C-
X-C motif chemokine ligand 10 (CXCL10), and TNF recep-
tor superfamily member 1B (TNFRSF1B) (Fig. 3b). TNFR
SF1B showed consistent expression changes in AD or AD-
related pathologies, as well as in COVID-19 patient CSF
samples. We also found that CXCL10 protein level was
increased in CSF of COVID-19 patients [93] (Fig. 3b).
To understand the potential pathological conse-

quences of these alterations by SARS-CoV-2 infection,
we interrogated the human protein-protein interactome,
the ten HCoVs host factor datasets, and the transcrip-
tome data from PBMCs (Fig. 3c) of COVID-19 patients
and CSF samples of neuro-COVID-19 patients (Fig. 3d).
We selected three AD blood markers (TGFB1, GSTM3,
and NKTR) and three CSF markers (SPP1, CXCL10, and
TNFRSF1B) as examples. Figure 3c, d shows the PPIs
among these markers (centered nodes) and their neigh-
bors, which interact with many DEGs or SARS-CoV-2
host factors. For example, NKTR interacts with zinc fin-
ger CCH-type containing 18 (ZC3H18) (SARS-CoV-2
host factor), small nuclear interacting protein 1 (SNIP1)
(SARS-CoV-1 and SARS-CoV-2 host factor), and casein
kinase II subunit alpha (CSNK2A2) (SARS-CoV-1,
SARS-CoV-2, and MERS-CoV host factor). NKTR and
its PPI partners transcription initiation factor TFIID sub-
unit 1 (TAF1), 40S ribosomal protein S14 (RPS14), and
arrestin beta 2 (ARRB2) are differentially expressed in
the PBMCs of COVID-19 patients. ARRB2 inhibits toll-
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like receptor 4 (TLR4)-mediated inflammatory signaling
[94], which is activated by the SARS-CoV-2 spike pro-
tein [95]. In CSF, innate immune genes SPP1, CXCL10,
and TNFRSF1B are differentially expressed in COVID-
19 vs. non-COVID-19 patients. Many of their PPI part-
ners are also SARS-CoV-2 host factors, among which
some are innate immune gene products, such as integrin
subunit beta 1 (ITGB1), which is highly expressed in
airway epithelial cells [96], and TNF receptor-associated

factor 3 (TRAF3), which controls type I interferon (IFN-
I) production [97]. Integrins may function as an alterna-
tive docking receptor for SARS-CoV-2 [98], and ITGB1
is also essential for the migration of monocytes across
the endothelium [99].
In summary, the expression of these selected AD

markers was significantly altered by SARS-CoV-2
infection. Using network and multi-omics data analysis,
we found that SARS-CoV-2 infection impacts several

Fig. 3 Neuroinflammation-mediated association between COVID-19 and Alzheimer's disease (AD). The expression of AD a blood and b
cerebrospinal fluids (CSF) protein markers in COVID-19 patients. Heatmaps show the fold change (FC) of the comparisons indicated above. c, d
Network analyses of the AD markers that are differentially expressed in COVID-19 vs. non-COVID-19. Neighbors of these markers that are the
SARS-CoV-2 host factors (non-circle nodes) or are DEGs (denoted by “+”) in the COVID-19 datasets are shown. Node shape indicates the number
of SARS-CoV-2 host factor datasets that contain the node. Edge colors indicate the protein-protein interaction source type. PBMC, peripheral
blood mononuclear cells. DEG, differentially expressed genes. ICU, intensive care unit
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immune-related genes/pathways that could lead to AD-
like neurologic impairment.

Elevated expression of SARS-CoV-2 host factors in brain
endothelial cells
We next evaluated the susceptibility of brain endothelial
cells to SARS-CoV-2 infection and potential microvascu-
lar injury. For this, we analyzed the single-nuclei RNA-
sequencing dataset from the prefrontal cortex region of
12 AD patients and 9 cognitively healthy controls [51]
(Fig. 4a). We examined expression of SARS-CoV-2 entry
factors across the six cell types: astrocytes, endothelial
cells, excitatory neurons, inhibitory neurons, microglia,
and oligodendrocytes (Fig. 4b). We observed low expres-
sion levels of ACE2, transmembrane serine protease 2
(TMPRSS2), furin (FURIN), and neuropilin 1 (NRP1) in
neurons in both AD patients and healthy controls. For
example, ACE2 and TMPRSS2 are mostly absent across
all six cell types. However, NRP1 is expressed in endo-
thelial cells, astrocytes, and microglia, and expression is
elevated in these cell types than in neurons. NRP1 was
reported to mediate SARS-CoV-2 cell entry in addition
to ACE2 and TMPRSS2 [100, 101]. Basigin (BSG) is
much more strongly expressed in endothelial cells than
other cell types, and has been reported as a docking
receptor for SARS-CoV-2 [102], in addition to ACE2
and NRP1. Among the proteases, FURIN has an elevated
expression in endothelial cells compared to other cell
types, and cystatin B (CSTB) is highly expressed in
microglia. Differential gene expression analysis con-
firmed that BSG and FURIN have significantly higher
expression in the brain endothelial cells than in other
cell types (Table S6). In addition to these SARS-CoV-2
entry factors, we also found elevated expression of
antiviral defense system genes in brain endothelial cells,
including lymphocyte antigen 6 family member E
(LY6E), interferon-induced transmembrane protein 2
(IFITM2) and 3 (IFITM3), and interferon alpha and beta
receptor subunit 1 (IFNAR1). These findings are further
confirmed in a second single-nuclei RNA-sequencing
dataset [52] (Fig. S4). LY6E impairs entry of coronavirus
by inhibiting spike protein-mediated membrane fusion
[103]. IFN-I receptors (IFNAR) play important roles in
IFN-I-mediated antiviral immunity [104], and IFN-
induced transmembrane protein 3 (IFITM3) inhibits
SARS-CoV-2 cell entry [105, 106]. IFITM3 is also associ-
ated with AD through its ability to bind and upregulate
γ-secretase, which leads to increased Aβ production
[107]. Network analysis also revealed several important
PPI partners of these antiviral defense genes (Fig. 4c),
such as signal transducer and activator of transcription 3
(STAT3) and janus kinase 1 (JAK1). These immune
genes are the HCoVs host factors and have significantly
elevated expression in endothelial cells compared to

other cell types of the brain. The JAK-STAT signaling
pathway mediates the biological functions of several cy-
tokines involved in cytokine release syndrome (CRS)
[108], which is common in COVID-19 [109]. Notably,
JAK inhibition reduces SARS-CoV-2 infection in the
liver and reduces overall morbidity and mortality in
COVID-19 patients in a pilot clinical trial [110]. Inhib-
ition of JAK-STAT signaling has therefore been pro-
posed as a treatment strategy for COVID-19 [111].

Reduced expression of antiviral defense genes in APOE
E4/E4 individuals
It has been suggested that SARS-CoV-2 neurotropism in
neurons and astrocytes may be affected by the APOE
genotype [112]. Individuals carrying APOE E2 have de-
creased AD risk [113, 114], and those carrying APOE E4
have increased risk [114], relative to carriers of the nor-
mal APOE E2 allele. Therefore, we examined the expres-
sion of these genes in endothelial cells (Fig. 4d) and
other cell types (Fig. S5). We found that the expression
of some of these genes varies by APOE genotype. NRP1
(log2FC = 0.52, FDR = 1.00) and BSG (log2FC = 0.34,
FDR = 1.00) have slightly elevated expression (lack of
statistical significance) in E3/E3 AD patients than in E4/
E4 AD patients in endothelial cells (Table S7). The ex-
pression of FURIN and CTSB are similar between APOE
E3/E3 and E4/E4 AD patients (|log2FC|< 0.1, FDR >
0.05). Yet, several antiviral defense genes, including
LY6E, IFITM2, IFITM3, and IFNAR1, have overall ele-
vated expression in E3/E3 AD patients compared to E4/
E4 AD patients (Fig. 4d). These results suggest that AD
patients with APOE E4/E4 genotype may have less active
antiviral defense gene expression activities, which could
render them at increased risk for SARS-CoV-2 infection.

Overall low expression of SARS-CoV-2 host factors in
human brain
As SARS-CoV-2 infection depends on key entry factors,
including ACE2, TMPRSS2, FURIN, and NRP1, we first
examined expression of these entry factors in healthy tis-
sues using GTEx data [77]. We found overall low ex-
pression of SARS-CoV-2 entry factors (ACE2, TMPRSS2,
FURIN, and NRP1) in the human brain (Fig. S6). Brain-
specific expression of the four SARS-CoV-2 entry factors
(blue bars in the highlighted yellow column of Fig. 5a)
are lower than in other tissues.
It is possible that these entry factors express in certain

brain regions, such as thalamus, brain stem, and hippo-
campus, which may be targeted by SARS-CoV-2 from
the olfactory bulb [115, 116]. Therefore, we further ex-
amined expression of these entry factors across different
brain regions. Among the 13 brain regions, no region
showed high specificity for ACE2, TMPRSS2, FURIN, or
NRP1 (Fig. 5b and Fig. S7). The Spearman's rank
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correlation coefficient (ρ) for TMPRSS2, FURIN, and
NRP1 with ACE2 does not show a co-expression (|ρ|max

= 0.42 for ACE2 and FURIN in nucleus accumbens) in
any of the 13 brain regions (Fig. 5C).

It has been reported that ACE2 has an overall low ex-
pression in lung [117, 118], as also shown in Fig. 5a, but
higher expression in certain cell types such as lung al-
veolar type II (AT2) epithelial cells [117], bronchial

Fig. 4 Elevated expression of SARS-CoV-2 host factors in human brain endothelial cells.a UMAP visualization of the single-nuclei RNA-sequencing
dataset from the prefrontal cortex region of Alzheimer’s disease (AD, n = 12) patients and healthy controls (CT, n = 9). b Expression of the entry factors
and antiviral defense proteins in different cell types in AD and CT groups. c Network analyses of the antiviral defense genes that are differentially
expressed in brain endothelial cells vs. other cell types. Node shape indicates the number of SARS-CoV-2 host factor datasets that contain the node.
Edge colors indicate the protein-protein interaction source type. d Expression of the entry factors and antiviral defense proteins in individuals with
different APOE genotypes (AD-E3/E3 n = 4, AD-E4/E4 n = 2, AD-E3/E4 n = 5, AD-E2/E4 n = 1, CT-E2/E3 n = 2, CT-E3/E3 n = 5, CT-E3/E4 n = 2). Excit
neuron, excitatory neuron. Inhibit neuron, Inhibitory neuron
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secretory cells [119], nasal mucosa [118], and absorptive
enterocytes in the ileum [120]. This prompted us to
investigate the brain expression of the entry factors at
the single-cell/nuclei level. Using single-nuclei RNA-
sequencing data of the caudal entorhinal cortex and the
superior frontal gyrus from AD patients [50], we exam-
ined the expression of the four key SARS-CoV-2 entry
factors in the excitatory neuron and inhibitory neuron

cells (Fig. 5d). Notably, we found very low expression of
SARS-CoV-2 entry factors as well, consistent with our
findings shown in Fig. 4b. In addition, co-expression of
TMPRSS2, FURIN, or NRP1 with ACE2 is low (Fig. 5e,
|ρ|max = 0.03 for ACE2 and FURIN in inhibitory neurons
in the entorhinal cortex region). These results suggest
that neurons are unlikely to be a direct target for SARS-
CoV-2 infection. However, we should note that even

Fig. 5 Expression of key SARS-CoV-2 entry factors across 33 human tissues, 13 brain regions, and brain cell types/subpopulations. a Expression
specificity of key SARS-CoV-2 entry factors in 33 tissues and b expression specificity of these genes in 13 brain regions using data from the GTEx
database (see the “Materials and methods” section). c Co-expression of TMPRSS2, FURIN, and NRP1 vs. ACE2 in the brain regions. d Expression of
key SARS-CoV-2 entry factors in the neuron cells. e Co-expression of TMPRSS2, FURIN, and NRP1 vs. ACE2 in the neuron. SCC, Spearman’s rank
correlation coefficient. EC, entorhinal cortex. SFG, superior frontal gyrus. Excit neuron, excitatory neuron. Inhibit neuron, Inhibitory neuron
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though its expression is low overall, NRP1 has a rela-
tively higher expression than the other three genes. To-
gether, these expression results at the tissue, brain
region, and single-nuclei levels suggest that SARS-CoV-
2 is unlikely to directly invade brain and that cognitive
impairment with COVID-19 is more likely caused by
neuroinflammation (Fig. 3) and microvascular injury
(Fig. 4).

Discussion
The negative effects of COVID-19 on the CNS may have
a long-term impact that could possibly increase the like-
lihood of developing AD-like dementia [1, 2, 4, 5, 121].
Here, we investigated the potential mechanisms for this
effect. Using network proximity measure in the human
PPI, we found strong network-based relationship be-
tween SARS-CoV-2 host factors (based on PPI assays
and CRISPR-Cas9 genetic assays) and disease-associated
genes/proteins of dementia-like cognitive impairment.
Network analysis of the SARS-CoV-2 host factors and
AD-associated genes/proteins reveals that these two sets
have significant network proximities in the human
interactome. Several AD-associated proteins were
highlighted, including RAB7A, TGFB1, and VCAM1,
with potentially high impact on the network according
to their degrees and eigenvector centralities. In addition,
the expression of these genes is also altered in COVID-
19 patients based on the results of transcriptomic
analyses.
Previous studies have shown that SARS-CoV-2 is

absent from the brain [22] and CSF [13]. However, evi-
dence also exists that SARS-CoV-2 may directly infect
the brain [19–21]. To test the possibility of direct brain
invasion by SARS-CoV-2, we investigated the expression
of key entry factors of SARS-CoV-2 at three levels: tis-
sue, brain regions, and brain cell types. We found very
low expression of ACE2 and TMPRSS2 in the brain and
neurons. ACE2 is the main known SARS-CoV-2 docking
receptor [117–119]; yet, it has little to no expression in
neurons (Figs. 4b and 5d). Recent studies found two
additional SARS-CoV-2 docking receptors, NRP1 [100,
101] and BSG [102]. BSG, NRP1, and FURIN have ele-
vated expression in the endothelial cells in the prefrontal
cortex region of both AD patients and healthy controls
compared to other brain cell types (Fig. 4b). Our results
suggest that it is unlikely for SARS-CoV-2 to target neu-
rons directly via ACE2. However, we cannot rule out the
possibility that SARS-CoV-2 may enter the brain
through the cerebral endothelium using receptors such
as BSG and NRP1 or other unknown entry factors. In
addition, other HCoVs, including HCoV-229E and
HCoV-OC43, have been detected in human brains [122].
Neuroinflammation is a major hallmark of AD, and we

analyzed the expression of AD blood and CSF markers

in PBMCs and CSF of COVID-19 patients. We identified
several AD marker genes (e.g., NKTR, GSTM3, TGFB1,
TNFRSF1B, SPP1, and CXCL10) which may provide
insights into the shared pathobiology of cognitive
dysfunction in COVID-19 and AD. These genes were
significantly altered in PBMCs or CSF of COVID-19
patients. Network analysis showed that these genes are
enriched in PPIs of immune-related gene products, such
as ITGB1 and ARRB2. Moreover, many of the PPI
partners of these genes are either the host factors of
SARS-CoV-2, or are significantly altered in COVID-19
patients, or both. In addition, the endothelial cells also
have elevated expression of antiviral defense genes
(LY6E, IFITM2, IFITM3, and IFNAR1) (Fig. 4b). We
identified important PPI partners (STAT3 and JAK1) of
these genes using network analysis combined with
SARS-CoV-2 host factor datasets and differential expres-
sion analyses. Due to the inflammation role of the JAK-
STAT signaling pathway in COVID-19, its inhibition by
baricitinib has been studied as a potential treatment
[111] in several clinical trials (NCT04320277 and
NCT04321993). We also found that individuals with
APOE E4/E4 have overall lower expression of antiviral
defense genes compared to individuals with APOE E3/
E3, suggesting a lack of expression of these genes and
potentially an elevated risk of SARS-CoV-2 infection.
Human-induced pluripotent stem cell models showed an
elevated susceptibility to SARS-CoV-2 infection in APOE
E4/E4 brain cells [112]. Further observations of APOE-
related susceptibility to SARS-CoV-2 infection are
warranted.
In summary, our observations provide mechanistic in-

sights into two questions: (a) whether SARS-CoV-2 in-
fection could potentially increase the risk of AD and
AD-like dementia; and (b) whether individuals with AD
and AD-like dementia have increased risk of SARS-
CoV-2 infection. Our analyses show a low possibility of
direct brain invasion by SARS-CoV-2 (Fig. 5). However,
we found significant mechanistic overlap between AD
and COVID-19 (Fig. 2) centered on neuroinflammation
and microvascular injury pathways or processes (Figs. 3
and 4). It was found that dementia patients had twice
the risk of COVID-19 compared to those without de-
mentia [9]. Although nursing home stays were adjusted
in this study [9], it could still potentially explain the high
risk in dementia patients, due to a higher nursing home
stay tendency in these patients. Other factors, such as
aging, a major risk factor of SARS-CoV-2 infection, may
also confound the results. We found that the SARS-
CoV-2 entry factors and the antiviral defense genes have
similar transcriptomic expression in the brain cells be-
tween AD patients and control individuals (Fig. 4b and
Fig. S4, Table S8). These observations do not suggest an
elevated risk of COVID-19 in AD patients by differential
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expression profiles of SARS-CoV-2 entry factors or anti-
viral defense genes. However, there may be yet unknown
SARS-CoV-2 entry factors and antiviral defense systems
involving other genes that may have altered expression
in AD patients, which could lead to an elevated risk of
COVID-19. Therefore, longitudinal clinical and functional
studies are warranted to inspect the causal relationship of
dementia and an elevated risk of SARS-CoV-2 infection in
the near future.
Due to the shared pathways and network-based rela-

tionships between COVID-19 and other diseases such as
AD, repurposing COVID-19 treatments may help indi-
viduals with other diseases (including AD) as well. For
example, we recently identified melatonin as a repurpo-
sable drug for COVID-19 [38]. Multiple preclinical
studies showed that melatonin was a potential treatment
for AD as well [123, 124]. The methodologies utilizing
omics data and unbiased network-based analysis in this
study can be applied to other infectious diseases based
on the high generalizability of network proximity meas-
ure [33, 38, 56]. Our future works include investigating
the causal relationships using techniques such as
Mendelian randomization analysis and providing
visualization and analyses tools in a web server similar
to our recent work [42].

Limitations
We acknowledge several limitations. First, our human
protein-protein interactome was built using high-quality
data from multiple sources; yet it is still incomplete. The
PPIs in our interactome are undirected. However, it has
been shown that incorporating the directionality of the
human PPI does not change network proximity results
[125]. The network associations could be either positive
or negative and require further investigation. In addition,
as our network proximity analysis relies on disease-
associated genes, literature bias could affect the results
because more highly-studied genes are more likely to ap-
pear in the dataset. Highly studied genes, such as innate
immune genes, tend to have higher degrees in the hu-
man interactome (Fig. S8). Therefore, degree-controlled
permutation tests were based on gene sets that had simi-
lar degree distributions to the gene sets-of-interest to re-
duce the effect of literature-based degree biases based
on our previous studies [33, 38, 56]. Second, we analyzed
expression levels of the key SARS-CoV-2 entry factors
and found low expression levels for ACE2 and TMPR
SS2. However, we cannot rule out the possibility of
SARS-CoV-2 directly targeting the brain via as-yet un-
identified mechanisms. Third, although we found several
AD protein markers that have similar alterations in
COVID-19 and AD, there are also protein markers that
have opposite directions in the gene expression change in
AD and COVID-19. There are several potential

explanations, such as small sample size during differ-
ential expression analysis, patient heterogeneity in the
omics profiling studies, and discrepancy between
mRNA and protein expression levels [126]. Possible
pathways of neuroinflammation and microvascular in-
jury were tested using data of either individuals with
AD or COVID-19, but not both. Future studies using
genetics and multi-omics data from individuals with
both AD and COVID-19 will be needed to confirm
and extend these network-based findings. In addition,
microvasculature components other than endothelial
cells, such as pericytes, are not investigated in this
study. Fourth, the significance of our findings in the
context of the general population of COVID-19 fre-
quently suffering from “brain fog” without a formal
diagnosis of AD needs further investigation. Last, the
potential mechanisms of key genes and pathways
discovered in this study help understand the relations
between COVID-19 and its neurological manifesta-
tions. However, further clinical and functional obser-
vations are needed to determine the causal
relationships, such as through the use of Mendelian
randomization.

Conclusions
In this study, we investigated COVID-19-assoicated
neurological manifestations using both network medi-
cine methodologies and bulk/single-cell/single-nuclei
transcriptomic data analyses. We identified strong
shared neuroinflammatory responses between COVID-
19 and AD. Several AD markers (CXCL10, TNFRSF1B,
SPP1, TGFB1, GSTM3, and NKTR) have significantly al-
tered expression in COVID-19 patients. Low expression
levels of SARS-CoV-2 entry factors were found in hu-
man brains, indicating low possibility of direct brain
damage by the virus. Transcriptomic analyses showed el-
evated expression levels of SARS-CoV-2 host factors
(BSG and FURIN) and antiviral defense genes (LY6E,
IFITM2, IFITM3, and IFNAR1) in brain endothelial cells
compared to other cell types, suggesting possible brain
microvascular injury by SARS-CoV-2 infection. In
addition, individuals with APOE E4/E4 may have in-
creased risk of SARS-CoV-2 infection by an overall
lower expression of antiviral defense genes (LY6E, IFIT
M2, IFITM3, and IFNAR1) compared to individuals with
APOE E3/E3. Altogether, these results can improve our
understanding of COVID-19-associated neurological
manifestations and provide guidance for future risk
management of potential cognitive impairment by
SARS-CoV-2 infection. Our findings could lay the
foundation for future research that ultimately leads to
testable and measurable serum biomarkers that could
identify patients at highest risk of neurological complica-
tions with COVID-19.
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