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The world’s population is ageing. Globally, the number of 
people 60 years or older reached 962 million in 2017, more 
than twice the number in 1980. In the future, this older seg-

ment of the world population is expected to double again by the year 
2050, to approximately 2 billion. For the first time in human history, 
there will be more older people than adolescents and young adults 
combined1. In addition, people of highly advanced age compose an 
ever-growing fraction of the world’s population, and the number 
of people 80 years or older is projected to more than triple from 
2017 to 2050, reaching 425 million1. This population ageing reflects 
progress in improving nutrition, living conditions, sanitation and 
health care2. Unfortunately, older people have a markedly greater 
risk of debilitating chronic diseases. More than 90% of individu-
als above 65 years of age have at least one chronic disease, such as 
cardiovascular disease, cancer, dementia, diabetes, osteoarthritis or 
osteoporosis, and >70% have at least two such conditions3,4. Thus, 
strategies to therapeutically target fundamental ageing mechanisms, 
as opposed to treating each age-associated disease separately, could 
have a tremendous effect on global health. Indeed, according to one 
estimate, a 2% delay in the progression of ageing processes would 
lead to an increase in 10 million healthy, as opposed to disabled, 
older people in the United States by 2050, thus resulting in health-
care cost savings of $7.1 trillion over 50 years (ref. 5). These num-
bers clearly demonstrate the socioeconomic effects of ageing and 
indicate the need for developing drugs and interventions to extend 
health into old age, that is, the healthspan.

Genetic approaches have been successfully used to extend the 
lifespan of model organisms, including yeast, worms, flies and 
rodents6. These studies have led to the identification of conserved 
genes and pathways controlling longevity and healthy ageing, which 

in turn have led to the identification of geroprotective drugs target-
ing these pathways. Recent human genetic studies suggest that the 
same conserved pathways may modulate lifespan and healthspan 
in humans. Most of these studies have used a candidate approach 
interrogating specific genes or pathways7,8. To advance this genetic 
discovery to identifying targets for slowing ageing in humans, a 
systematic approach is needed to discover the key genes and path-
ways that contribute to human longevity and healthy ageing. In 
this Perspective, we discuss how use of the extreme phenotype of 
long-lived individuals can enable the identification of genetic vari-
ants that may provide molecular targets for unravelling the physi-
ology of healthy ageing and for developing therapies that prevent, 
ameliorate or attenuate multiple age-related illnesses in humans. 
After all, long-lived individuals, through their very existence, have 
established the physiological feasibility of living beyond the ninth 
decade in relatively good health and ending life without a period of 
protracted illness.

Healthy lifespan can be extended in model organisms
The lifespan of animal models of ageing, such as Caenorhabditis ele-
gans, can be significantly extended by the mutation of single genes. 
For example, dampening insulin or insulin-like growth factor 1 
(IGF-1) signalling (IIS) through weak mutations in daf-2, the worm 
ortholog of the human IGF-1 receptor (IGF-1R), nearly doubles the 
lifespan, possibly by increasing stress responses9. Modifying IIS also 
affects lifespan in other organisms, including yeast, flies and mice, 
probably because of the role of IIS in nutrient sensing6. Indeed, mul-
tiple similarities exist between the effects of IIS inhibition and those 
of dietary restriction, which is known to extend lifespan in mul-
tiple species10. Interventions in other pathways involved in growth, 
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metabolism and nutrient sensing, such as dampening mechanistic 
target of rapamycin (mTOR) or activating AMP-activated protein 
kinase (AMPK), also extend lifespan11–13. These longevity pathways 
are intertwined, as evidenced by many connected effector proteins 
that interact either directly or through their network neighbors14 
(Fig. 1 and Box 1). These signalling pathways are also connected 
to stress-response pathways, thus indicating the interplay between 
metabolism and molecular and cellular defences against damage.

Importantly, the genetic effects on healthspan and lifespan can 
be mimicked pharmacologically15. The most advanced example of 
this is the attenuation of TOR kinase activity by rapamycin, which 
significantly increases both lifespan and healthspan in mice16,17 and 
other model organisms18–20. To facilitate the identification of drugs 
that affect healthspan and lifespan, a decade ago, the US National 
Institute on Aging (NIA) established the Interventions Testing 
Program (ITP), a consortium of three centres that test drugs for 
their effects on the lifespan in mice21,22. To date, the ITP has shown 
that chronic treatment with rapamycin, 17α-oestradiol, nordihy-
droguaiaretic acid, acarbose, high-dose aspirin and low-dose met-
formin extend the lifespan, but often preferentially in male rather 
than female mice16,23. Among these compounds, metformin is an 
example of a drug that not only targets known ageing processes 
but also effectively protects humans against multiple age-related 
diseases24. The Targeting Aging with Metformin (TAME) clinical 
trial is poised to launch testing to determine whether metformin 
can delay the onset of age-related diseases in older people and may 
pave the way for the US Food and Drug Administration to consider 
ageing as a disease indication25.

Genetics of human ageing
Despite advances in identifying genes and pathways that can be tar-
geted to increase the healthspan in model organisms, a key question 
remains as to whether these pathways are relevant in humans26,27. 
Even so, other pathways critical to ageing in our species are likely 
to exist. Indeed, humans are extremely long lived, and several major 
age-related diseases, such as Alzheimer’s disease and cardiovascular 
disease, are absent in most model organisms. Hence, to achieve the 
full beneficial potential of therapeutically targeting ageing, human 
genetics is required. In human studies, natural mutants, rather than 
targeted genetic engineering, must be used to identify genes and 
pathways regulating the lifespan. The clear place to start is studying 
long-lived individuals, particularly those extremely rare individuals 
who avoid disease and live to 100 years or older, that is, centenarians.

Lifespan refers to age at death, whereas longevity indicates sur-
vival into extreme old age. The natural lifespan in humans, even 
under optimal conditions in modern societies, varies considerably. 
Whereas environmental factors, including diet, physical activity, 
health habits, and psychosocial factors, are important, the human 
lifespan has a genetic component in cohorts of advanced age. This 
aspect was first demonstrated by a comparison of the survival of 
siblings of centenarians versus their siblings born at the same time 
as the centenarians but who died in their early seventies28. A heri-
table component of human longevity was later confirmed by study-
ing sibships of long-lived people and comparing their survival to 
that in birth cohorts from the same geographical area29, and by 
comparing age at death between monozygotic and dizygotic twins30. 
Together, these studies have indicated that although as much as 25% 
of the variation in human lifespan may be due to genetic factors31,  
the genetic component of lifespan is particularly strong (35%) in the 
oldest old people28,32–36. Indeed, the offspring of centenarians have 
a lower prevalence of age-related diseases, as well as more benefi-
cial or ‘youthful’ profiles for many metabolic and immune-related 
parameters than do age- and sex-matched controls37–40. A recent 
estimate of this prevalence, based on pedigree data from Ancestry.
com public trees, is lower than 10%, possibly because of assortative 
mating around genetic and/or environmental lifespan-influencing 

factors41. Shared environment clearly plays a role in determining the 
average human lifespan42. However, the heritability of human lon-
gevity remains under study43.

Identification of the genetic factors that underlie extreme human 
lifespan should provide insights into the mechanisms of human lon-
gevity and disease resistance and may lead to the identification of 
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Fig. 1 | Examples of conserved pathways of ageing. a, Interconnection 
among ageing pathways. Pathways are adapted from Kyoto Encyclopedia of 
Genes and Genomes (KEGG). Only key components of each pathway are 
shown. Arrows represent positive regulation, and bars represent negative 
regulation. b, Gene sharing among ageing pathways and longevity. Gene 
sets of these seven age-related pathways were collected from KEGG (as 
of 12 May, 2019) or MsigDB (v.6.2). Two pathways are connected if they 
share at least one gene. The size of the node and the width of the edge are 
proportional to the number of genes in the pathway and the number of 
shared genes between two pathways, respectively.
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novel targets for drugs and other treatment strategies to promote 
healthy ageing. As a complex trait, human longevity is likely to be 
influenced by different types of genetic variants and interactions 
among them, across the allele-frequency spectrum. Common vari-
ants associated with human longevity have been the focus of many 
recent genome-wide association studies (GWAS) using a variety of 
trait definitions and study designs (Supplementary Table 1) includ-
ing: (1) exceptional longevity as an extreme binary phenotype in a 
case–control design; (2) parental lifespan as a continuous quantita-
tive phenotype of individuals from a general population collected 
in large reference biobanks; (3) genome-wide scans informed by 
age-related diseases; and (4) an integrated approach combining sev-
eral GWAS strategies. Genetic variants associated with age-related 
disease and traits are also likely to be associated with lifespan44 and 
the underlying ageing process45,46. These GWAS have identified 
more than 50 longevity-associated genetic loci of genome-wide 
significance (Supplementary Table 2), thus suggesting that human 
longevity is a polygenic trait influenced by many variants with small 
to modest effect sizes (Fig. 2). However, current GWAS based on 
widely used single-nucleotide-polymorphism arrays have three lim-
itations. First, they cannot account for most of the genetic variance 
of complex traits, which consists of rare, not common, variants.  
This aspect is particularly important for rare phenotypes, such as 
extreme longevity. In general, human healthspan and lifespan are 
likely to be adversely affected by the germline burden of rare dam-
aging variants47. Second, identifying the causal gene mutations 
from GWAS signals remains difficult48–50. Third, GWAS of human 

Box 1 | Human ageing and metabolism

Several pathways and regulators of metabolism have been identi-
fied that influence the lifespan and healthspan. These pathways 
and regulators perform nutrient sensing and highly conserved 
across species104. Examples of the major metabolic pathways im-
plicated in regulating ageing are the IIS and AMPK-signalling 
pathways (Fig. 1a). Downstream of these signalling pathways 
are several key regulators of ageing-associated processes. These 
regulators include mTOR, forkhead box protein O (FOXO) and 
sirtuins, which control gene transcription and post-translational 
protein activity. Restriction of nutrients leads to lower secretion 
of insulin and IGF-1 and to the attenuation of IIS transmitted via 
the phosphatidylinositol 3-kinase and protein kinase B (PI3K–
AKT) pathway105, thus resulting in downstream inhibition of 
mTOR106 and activation of FOXO107. Inhibition of mTOR complex 
1 (mTORC1) enhances catabolic processes, such as autophagy108. 
FOXO proteins, a family of transcription factors, also regulate 
the transcription of autophagic genes109 as well as other genes that 
promote resistance to oxidative stress110. The AMPK pathway, 
in contrast, is activated under nutrient-restricted conditions, 
although with similar downstream effects. AMPK signalling 
inhibits mTOR and stimulates FOXO activity111. Furthermore, 
AMPK alters the metabolic environment of cells, thus increas-
ing NAD+ levels112. The rise in NAD+ causes increased activity of 
SIRT1, a member of the sirtuin family of NAD-dependent dea-
cytelases112. Activation of SIRT1 leads to deacetylation of FOXO, 
which in turn increases the DNA binding of FOXA and enhances 
transcriptional activation113. Decreased inflammation and en-
hanced cell survival are additional downstream effects of SIRT1 
activation resulting from its inhibition of NF-κB, and p53 and 
BAX114. Thus, under a state of nutrient restriction, these highly 
interactive pathways and regulators together promote healthy 
ageing and longevity.

SIRT6 is another member of the sirtuin family with strong 
links to longevity. SIRT6 has been implicated in the control of 
glucose homeostasis, genome stability and silencing of repetitive 
elements115. Overexpression of SIRT6 leads to lifespan extension 
in mice116. Furthermore, a strong positive correlation has  
been identified between high SIRT6 enzymatic activity and 
maximum lifespan across mammalian species117. Although 
most support for the roles of these pathways and regulators in 
ageing has come from studies in model organisms, evidence 
of their effects on human ageing is rapidly accumulating. 
Decreased nutrient intake in humans through caloric restriction 
or condensed intake results in improved insulin signalling, 
decreased inflammation and stimulation of autophagy118. 
However, for many individuals, these lifestyle practices are 
challenging to durably sustain. Therefore, pharmacologic 
interventions that mimic the beneficial effects of these 
longevity-promoting pathways are needed, and some are 
already being tested in humans. A drug that decreases mTOR 
activity leads to enhanced immune response in older adults119, 
whereas supplementation with resveratrol, a sirtuin activator, 
improves metabolic measures in adults with diabetes120. Several 
activators of SIRT6 have recently been reported121. Despite these 
advances, progress has been slow. Genetic studies in people with 
extreme lifespans have the potential to accelerate the discovery 
of molecular targets with direct relevance to humans. Studies 
of long-lived individuals, including centenarians, have revealed 
that the genomes of these healthy agers are enriched in gene 
variants that attenuate IIS70,122–124 and contain polymorphisms 
in FOXO125. These findings substantiate the value of pursuing 
therapeutic strategies targeting these pathways discovered in 
model organisms, to achieve healthy ageing in humans.
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Fig. 2 | Genetic architecture of human ageing. The genetic architecture 
of human age-related phenotypes, because these are complex traits, is 
likely to include genetic variants across the allele frequency spectrum with 
different effect sizes. Common variants associated with human survival 
have been extensively searched for in many recent GWAS. Using the 
GWAS Catalog, we compiled minor-allele frequencies (MAFs) and effect 
sizes (estimated 𝛽 values) of independent variants with genome-wide 
statistical significance (P < 5 10–8) from various studies of longevity  
and lifespan (Supplementary Table 2). Purple and green dots, 
with separate correspondingly coloured y axes, represent such 
longevity-associated and lifespan-associated variants, respectively.  
For lifespan, only variants with effect sizes available are included.  
On the basis of their MAFs, variants are separated into three types—rare 
(MAF < 1%), uncommon (1% ≤ MAF ≤ 5%) and common (MAF > 5%)—
according to widely used, albeit arbitrary, criteria. Very few rare variants 
show significant association, because either they were not genotyped 
by single-nucleotide-polymorphism arrays used by current GWAS or 
the studies did not have sufficient power to detect genetic signals. As 
expected, there is a clear inverse relationship between the effect size and 
the allele frequency of complex-trait-associated variants.
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longevity have to date been predominantly based on populations 
of European ancestry. To fully understand the genetic architecture 
of human ageing, ancestrally diverse populations must be studied, 
while avoiding population stratification, which can confound asso-
ciations between genotype and the trait of interest. This goal can be 
accomplished by cross-validating genetic variants between ances-
trally different cohorts.

Going to extremes: exceptional longevity for discovery of 
antiageing drug targets
Extremely long-lived individuals, such as centenarians, compose 
only a tiny proportion (~0.01–0.02%) of the United States popu-
lation51, but their genes contain a biological blueprint for healthy 
ageing and longevity. Although advanced age is the major risk 
factor for most diseases affecting older adults, including cardio-
vascular disease, cancer, type 2 diabetes mellitus and Alzheimer’s 
disease, centenarians avoid the onset of these conditions by 20–30 
years, and many remain disease free for the duration of their  
lifespan52–54. Importantly, the cost of end-of-life healthcare for cen-
tenarians is also substantially less than that for non-centenarians55, 
thus illustrating the lower burden of disease and less hospitalization. 
This extreme and extremely rare phenotype is ideal for the study of 
genetic variants that regulate healthspan and lifespan.

Genetic discovery using human populations typically involves 
thousands or even tens of thousands of individuals, whereas the 
size of a centenarian cohort is generally in the hundreds. In com-
plex phenotypes, however, many different rare variants are likely to 
have large effects, whereas common variants have relatively minor 
effects. Thus, one strategy to overcome this power deficit is to 
sequence individuals at the extreme end of a phenotype distribution 
to search for rare variants with large effects. Identifying genes or 
gene products with large effects also makes sense in terms of identi-
fying molecular targets for drug development. A successful example 
using this strategy has been the identification of proprotein con-
vertase subtilisin/kexin type 9 serine protease (PCSK9), an enzyme 
involved in cholesterol metabolism by regulating low-density lipo-
protein (LDL)-receptor degradation, as a drug target to decrease 
plasma LDL cholesterol and the risk of coronary heart disease. 
PCSK9 was first connected to cholesterol metabolism through the 
study of a single family with autosomal-dominant hypercholesterol-
aemia caused by mutations in PCSK9 (ref. 56): one gene had a large 
effect. Subsequently, several healthy individuals with no circulat-
ing PCSK9, as a result of compound heterozygous loss-of-function 
mutations, were identified57,58. The finding that the few participants 
with loss-of-function mutations in PCSK9 had no adverse effects 
from being extremely hypocholesterolaemic throughout life and 
had a significantly lower risk of cardiovascular disease provided 
confidence to pursue the development of inhibitors of PCSK9. 
After successful clinical trials59,60, antibodies to PCSK9 have been 
approved, and an RNA-interference drug is under regulatory 
review, thus representing excellent examples of successful genomic 
medicine. Similarly to PGSCK9 mutations, rare mutations in the 
gene encoding cholesteryl ester transfer protein (CETP) have been 
linked to accelerated atherosclerosis, thus leading to the develop-
ment of CETP inhibitors. However, these CETP inhibitors have not 
yet shown significant therapeutic effects towards atherosclerosis in 
clinical settings61. Clearly, the study of smaller cohorts of individuals 
with extreme phenotypes such as ultra-low plasma LDL cholesterol 
can be tremendously powerful and effective in drug development.

Because of its strong genetic component, extreme longevity 
lends itself to a similar approach to that in the PCSK9 example. 
Identifying genetic variants enriched in centenarians and possibly 
related to their extreme longevity, although more complicated than 
the case of PCSK9, may be a key strategy to develop the drug tar-
gets desperately needed for combating age-related multimorbidity. 
As a consequence of the enormous progress in DNA sequencing62,  

this search can now be accomplished in a straightforward manner 
by sequencing whole exomes and/or whole genomes of centenar-
ian and control cohorts. In general, trait-associated rare variants are 
exceedingly difficult to identify, because of insufficient statistical 
power63, thus posing a major challenge in association studies64,65. 
To address this statistical issue, in addition to using exceptional 
longevity as an extreme phenotype, multiple steps must be taken 
to decrease false discovery and increase power, including (1) sta-
tistical analysis that integrates complementary genomic data  
(Box 2 and Fig. 3); (2) confirmation of a rare variant in a second 
cohort of long-lived individuals; (3) examination of the absence or 
depletion of the variant in a large control population; and (4) dem-
onstration of functional effects of the identified longevity-associated 

Box 2 | Genetic studies of complex human traits

Different approaches are used to analyse common and rare vari-
ants in case–control association studies (Fig. 3). Common vari-
ants usually refer to variants with MAF >5% (or >1%) in the 
studied cohort or population. Direct trait association of indi-
vidual common variants is usually examined by logistic regres-
sion with population-structure adjustment, if necessary. Dif-
ferent methods for post-GWAS analyses have been developed 
to uncover candidate causal variants and/or genes underlying 
trait-association signals from common variants. Fine-mapping 
analyses (for example, PAINTOR126 and eCAVIAR127) can prior-
itize causal variants in implicated risk loci and can be used to 
infer corresponding causal genes if methods integrate expres-
sion quantitative trait loci. Aggregation-based methods can have 
greater power to identify risk genes (for example, TWAS128), risk 
pathways (for example, ALIGATOR129) or risk gene modules 
(for example, dmGWAS130) without pinpointing casual variants. 
Many methods simply require summary statistics, but some 
approaches require genotype GWAS data (for example, MAG-
MA131). Other methods include network-based approaches, 
which can predict underlying causal genes given trait-associated 
variants (for example, PrixFixe132 and PGA133,134). Rare variants 
are variants with MAF <1% in the cohort or population. Trait as-
sociation of individual rare variants can be examined by Fisher’s 
exact test. The burden test and SKAT are commonly used instead 
to test the collective association of a group of rare variants at the 
gene or gene-set level. The statistical power of such association 
tests may depend on the categories of tested variants. Selecting 
rare variants for testing can be based on their effects on coding 
sequences (for example, nonsense and frameshift variants are 
more likely to cause loss-of-function effects but are limited in 
number) or their functional scores from in silico prediction tools 
(for example, CADD135 and PrimateAI136). Another way to po-
tentially improve statistical power is to weight rare variants in 
the burden test and SKAT with scores that are likely to reflect 
their functional effects. Common weighting schemes use allele 
frequency and/or scores from variant-scoring tools. A recently 
described related method integrates the burden test or SKAT 
results with gene network and phenotype data to predict causal 
genes137. All the aforementioned procedures can generate a list of 
causal-variant or causal-gene candidates. Human variant cata-
logues with clinical information (for example, ClinVar138) pro-
vide a convenient way to validate findings but have limitations 
due to their low coverage. Experimental validation of potential 
causal variants or genes with genome-editing tools (for exam-
ple, CRISPR–Cas9) and functional assays are needed to demon-
strate cause and effect, similarly to validating a disease-causing 
mutation.
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genes and variants on various parameters relevant to health and 
longevity, including cellular and organismal resistance to stress and 
improved fitness. This combination of steps in the genetic analysis 
of long-lived individuals should enable the necessary discoveries of 
longevity-associated rare variants in genes that may potentially be 
targeted for drug development66,67.

This approach essentially reflects an experiment of nature and 
uncovers specific targets ‘perturbed’ by ‘longevity’ alleles in rare 
individuals with long lifespans. Genetic variation acts as a natural 
version of a randomized control trial: alleles that perturb a particu-
lar target and are associated with a particular disease provide strong 
support for the therapeutic validity of the target and are a strong 
predictor of the success of clinical trials testing drugs able to per-
turb the target similarly68. Using drugs mimicking the effects of such 
alleles would be expected to establish causal relationships between 
targets and outcomes, thus eventually leading to pharmacological 
interventions in ageing. This novel pharmacological armamentar-
ium may yield a true longevity dividend, as already demonstrated 
genetically. Some evidence has already indicated that this approach 
works. Through a resequencing approach of genes in the IIS pathway, 
the first conserved ageing pathway to be discovered, rare protective 
alleles have been found to be enriched in centenarians69,70. These 
longevity-associated rare alleles cause decreased IIS in cell models, 
thus demonstrating the mechanistic conservation of the pathway 
between invertebrate models and humans, and demonstrating the 
functional relevance of the positive associations between the vari-
ants and longevity. Approaches to decrease IIS therapeutically, par-
ticularly later in life, should have positive effects on human health. A 
recent preclinical study has shown that late-life targeting of IGF-1R 
by monoclonal antibodies significantly improves healthspan and 
lifespan in female mice, thereby underscoring how human genetic 
discoveries can be translated into immediate drug treatment71.

From genes to drugs: the road to healthy human ageing
With the identification of rare variants in long-lived individuals, 
there is now a need to functionally validate the variants (Fig. 4).  
Interpretation of variants on the basis of sequence information 
alone is limited, because classification of rare coding variants  
as causative mutations or neutral polymorphisms is challenging. 

One of the most successful approaches has been to assign the roles 
of variants in the context of protein–protein interactome networks72. 
The rationale of this approach is based on the finding that most 
proteins perform their functions through interacting with other 
proteins72,73. Many proteins are pleiotropic and perform diverse 
functions through interacting with multiple proteins74. Mutations 
in the same gene affecting different protein interactions can often 
lead to clinically distinct outcomes, whereas mutations affecting, 
the same interaction, for example, the binding interface of a pro-
tein, often lead to the same disorders75. Therefore, the protein inter-
actome networks yield insights into the molecular mechanisms of 
disease-causing mutations75 and aid in identifying novel candidate 
genes and mutations72,73. On average, a protein interacts with more 
than five other protein partners in the human interactome network. 
The current version of the Human Gene Mutation Database76, the 
most comprehensive high-quality database for disease-associated 
genes and mutations, lists 3,667 disease-associated genes, 1,811 
of which (49.4%) cause two or more clinically distinct disorders 
through different mutations on the same gene. Therefore, determin-
ing interaction-specific disruptions caused by rare missense vari-
ants is highly important.

For example, through experimentally and computationally inte-
grated approaches, the functional effects of coding variants have 
been systematically investigated in the context of the human inter-
actome networks through a series of agnostic functional assays in 
parallel75,77–80. This high-throughput pipeline, referred to as inte-
grated protein interactome perturbation (InPOINT) screening  
(Fig. 5), has been used to identify causal coding variants (for exam-
ple, missense mutations) that lead to changes in protein stability 
and protein interactome networks. Briefly, this InPOINT pipeline 
incorporates different high-throughput approaches: Clone-seq to 
generate specific mutant clones in a massively parallel manner79, 
a fluorescence-based assay to determine the variant’s effects on 
protein stability and protein interaction assays to examine a vari-
ant’s effect on specific protein–protein interactions81–83. Combining 
multiple assays ensures the quality of the prediction and practically 
eliminates false-positive results. More importantly, this strategy  
also provides several important insights into mechanisms, partic-
ularly that many coding mutations affect only a subset of specific 
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protein–protein interactions, rather than all interactions, and that 
mutations in the same protein that disrupt different protein–protein 
interactions often lead to clinically distinct outcomes75,79,84,85.

Functional variants prioritized from the high-throughput 
molecular analysis can then be further tested for their effects 
on cellular outcomes, such as resistance to stress. Indeed, most 
longevity-associated genes identified in model organisms confer 
increased stress resistance, including the response to genotoxic or 
oxidative stress86–89. Such stress tests can be performed in a relatively 
high-throughput fashion in human cells with the variants intro-
duced via gene-editing technology. The molecular effects of these 
variants can also be studied economically in human induced plu-
ripotent stem cells (iPSCs) and their progeny to identify the func-
tional outcomes of the sequence variants in a variety of cell types90. 
For example, iPSCs with a rare variant introduced via gene edit-
ing can be compared with the parental iPSCs for proliferation or 
differentiation capacity, thus creating embryonic fibroblasts, neu-
rons, vascular smooth muscle cells and vascular endothelial cells. 
The iPSC-derived cell types can be treated with agents to induce a 
modest level of genotoxic or oxidative stress to measure the effects 
of the variants on markers of cell viability and resilience, including 
levels of reactive oxygen species, DNA-damage levels, mitochon-
drial function, senescence and cell signalling. This approach has 
been successfully used to document the role of the 9p21.3 cardio-
vascular disease locus on vascular smooth muscle cells derived from 
gene-edited iPSCs91.

Eventually, a candidate rare variant must be validated for its 
effects on healthspan and lifespan. This validation can be performed 
in rodents by introducing the rare coding variant into one allele of 
the gene. For example, mice and rats carrying an allele encoding 
the centenarian variant in the highly conserved Igf1r locus have 

been generated, and healthspan and lifespan studies are underway. 
However, this process is possible only if the centenarian rare variant 
is located in a conserved sequence, which is not always the case. If 
the rare variant is found in a domain not conserved between mice 
and humans, then the mouse model must be ‘humanized’ by replac-
ing the mouse gene with the human gene, and the rare variant must 
be introduced into the humanized gene. Although time consuming, 
this approach documents the contribution of a specific centenarian 
variant to longevity. Often, preexisting data are available that pre-
dict successful outcomes. For example, genetic depletion of IGF-1, 
IGF-1R or growth hormones and growth-hormone receptors that 
function upstream of IGF-1 by using knockout alleles has been 
found to confer longevity in mice92.

If the variant is in a non-coding region of a gene, presumably 
in a promoter, enhancer or another regulatory region modulat-
ing expression with age or stress, then generating the appropriate 
mouse models to directly validate the effect of the variant on lon-
gevity is difficult. Instead, determining the effect of underexpres-
sion or overexpression of the gene by using mice heterozygous 
for the putative gene or carrying extra copies of the gene can be 
used to examine the roles of the gene in lifespan and healthspan. 
For example, because we had identified rare non-coding variants in 
several genes encoding components of the IκB kinase–NF-κB path-
way (Y.S., unpublished data), we used mice heterozygous for the p65 
(RelA) subunit of the transcription factor NF-κB to demonstrate 
that decreased NF-κB activity extends the healthspan93. Of note, this 
validation of rare variants in rodent models can be performed more 
rapidly if the analysis is performed in mouse models of accelerated 
ageing, such as the Ercc1–/∆ model of XFE progeria94 or mouse mod-
els of Hutchinson–Guilford progeria syndrome95.

After the functional effect of a sequence variant is confirmed 
through either transgenic or iPSC approaches, the next step is to 
identify novel compounds or existing drugs that mimic the effect of 
the variant on its cognate pathway or cell function. Phenotypic or 
fluorescence-based reporter assays in cells can be created to screen 
for compounds that mimic the effect of the genetic variant. For 
example, NF-κB reporters can be used to identify compounds that 
decrease NF-κB activation in response to stress. Indeed, compounds 
targeting the IκB kinase upstream of NF-κB extend healthspan in 
mice93. Another example is the IGF-1R coding variant found in cen-
tenarians, which acts in a dominant manner in activating some but 
not all downstream targets of the receptor. This selective activity 
of the IGF-1R variant can be screened with the appropriate combi-
nation of reporter constructs. Another example is the non-coding 
variants in FOXO3 associated with extreme longevity96,97. These 
variants appear to increase the level of FOXO3 promoter activity, 
at least under conditions of oxidative stress. The level of FOXO3 
in the nucleus decreases with age in mice and worms. Thus, assays 
measuring changes in the level and subcellular localization of 
FOXO3 are needed. For example, knock-in of a fluorescent reporter 
into the FOXO3 locus to create a fusion protein expressed from the 
endogenous promoter has been used to screen for drugs that alter 
either the overall or nuclear level of FOXO3. Indeed, with FOXO3 
fluorescence-based assays, a drug has been identified that increases 
nuclear localization of FOXO3 (ref. 98), and natural products such 
as astaxanthin, epigallocatechin gallate99, resveratrol and syringar-
esinol100 have been found to increase expression of FOXO3.

Summary and future prospects
In recent years, several breakthrough genetic discoveries in humans 
with extreme phenotypes have led to rapid and successful drug 
development57,101,102. In this Perspective, we propose the feasibility of 
applying this same concept to the development of novel gene-based 
therapeutics against ageing, that is, to increase human healthspan 
by interfering with pathways that collectively control ageing, the 
process that increases the risk of most chronic diseases to a greater 
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extent than any other risk factor. Despite enormous improvements 
in human health over the past century, we remain far from a situa-
tion in which living to 100 years of age in fairly good health is the 
norm. To get closer to this state of good health, we propose that 
the genetics of extreme human longevity can be used as a blue-
print, by using germline variants that have been found to be critical 
determinants of living a long and healthy life. Indeed, whereas the 
genetic component of human lifespan on average is not very strong, 
genetic variants, rather than merely being shared familial or envi-
ronmental factors, are the critical determinants of extreme human 
longevity103. We argue that this aspect makes long-lived individu-
als exceptionally suitable as a source for discovery of genetic targets 
for new pharmaceutical approaches to modulate both conserved 
and non-conserved pathways of ageing in humans. Modulating 
such pathways has been conclusively shown to extend the lifespan 
and healthspan in model organisms, but other pathways, possi-
bly specific to the human species, remain to be discovered. Given  
the increasing availability of whole-exome and whole-genome 

sequencing data from human populations, including centenarians49, 
rapid identification of rare coding variants that affect phenotypes of 
healthy ageing is now possible.
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