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Genomic data integration—the process of statistically combining diverse sources of information from functional
genomics experiments to make large-scale predictions—is becoming increasingly prevalent. One might expect that
this process should become progressively more powerful with the integration of more evidence. Here, we explore the
limits of genomic data integration, assessing the degree to which predictive power increases with the addition of
more features. We focus on a predictive context that has been extensively investigated and benchmarked in the
past—the prediction of protein–protein interactions in yeast. We start by using a simple Naive Bayes classifier for
integrating diverse sources of genomic evidence, ranging from coexpression relationships to similar phylogenetic
profiles. We expand the number of features considered for prediction to 16, significantly more than previous studies.
Overall, we observe a small, but measurable improvement in prediction performance over previous benchmarks,
based on four strong features. This allows us to identify new yeast interactions with high confidence. It also allows us
to quantitatively assess the inter-relations amongst different genomic features. It is known that subtle correlations
and dependencies between features can confound the strength of interaction predictions. We investigate this issue in
detail through calculating mutual information. To our surprise, we find no appreciable statistical dependence
between the many possible pairs of features. We further explore feature dependencies by comparing the
performance of our simple Naive Bayes classifier with a boosted version of the same classifier, which is fairly
resistant to feature dependence. We find that boosting does not improve performance, indicating that, at least for
prediction purposes, our genomic features are essentially independent. In summary, by integrating a few (i.e., four)
good features, we approach the maximal predictive power of current genomic data integration; moreover, this
limitation does not reflect (potentially removable) inter-relationships between the features.

[All genomic feature data used in this study can be downloaded at http://networks.gersteinlab.org/intint/.]

A major challenge in post-genomic biology is systematically
mapping the interactome, the set of all protein–protein interac-
tions within an organism. Since proteins carry out their func-
tions by interacting with one another and with other biomol-
ecules, reconstructing the interactome of a cell is the important
first step toward understanding protein function and cell behav-
ior (Hartwell et al. 1999; Eisenberg et al. 2000). Recently, several
large-scale protein-interaction maps have been experimentally
determined in the model organism Saccharomyces cerevisiae (Uetz
et al. 2000; Ito et al. 2001; Gavin et al. 2002; Ho et al. 2002).
These studies have drastically improved our knowledge of pro-
tein interactions. Unfortunately, the data sets generated from
these studies are often noisy and incomplete (von Mering et al.
2002). In addition to experimentally determined interaction data
sets, there exists a large amount of biological information in the
expanding functional genomic data sets, such as sequence, struc-
ture, functional annotation, and expression-level databases. It is
thus desirable to computationally predict protein–protein inter-
actions by exploiting the interaction evidence contained in these
data sets. Such predictions can serve as a valuable complement to
the current experimental efforts. Several studies have been car-
ried out to search for individual features contained in the ge-
nomic data sets that are useful for interaction prediction. For
example, two proteins are likely to interact if they have ho-
mologs in another genome that are fused into a single protein, or

if their mRNA expression patterns are correlated (Marcotte et al.
1999a,b; Ideker et al. 2001; Jansen et al. 2002a). Detailed reviews
of these individual methods can be found elsewhere (Valencia
and Pazos 2002; Xia et al. 2004).

Each genomic feature, by itself, is only a weak predictor of
protein interactions. However, predictions can be improved by
integrating different genomic features (Marcotte et al. 1999b).
There are two main reasons for this. First, predicting a protein–
protein interaction with confidence depends on how much evi-
dence supports it. When multiple distinct features all support a
predicted interaction, our confidence in the prediction increases.
Second, different features may cover different subsets of the in-
teractome, and feature integration can increase the coverage. Fea-
ture integration can be accomplished via simple rules, such as
intersection, union, or majority vote. To achieve optimal predic-
tive power, however, different genomic features need to be prop-
erly integrated into a single probabilistic framework (Gerstein et
al. 2002). Many machine learning methods can be used for fea-
ture integration, such as Bayesian approaches (Troyanskaya et al.
2001; Jansen et al. 2003; Friedman 2004), decision trees (Lin et al.
2004; Zhang et al. 2004), and support vector machines (Brown et
al. 2000). In particular, Bayesian approaches can be roughly di-
vided into two broad groups as follows: (1) learning to infer the
causal structure of cellular networks from quantitative measure-
ments (Friedman 2004); (2) classification based on a set of proba-
bilistic rules. Here, we focus on the second classification aspect of
Bayesian approaches. In addition to protein–protein interaction
prediction, feature integration is also essential for other predic-
tion problems in genomics as well, such as localization predic-
tion (Drawid et al. 2000), function prediction (Troyanskaya et al.
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2001; Lee et al. 2004), and genetic interaction prediction (Wong
et al. 2004).

One might expect genomic data integration to become in-
creasingly powerful with the integration of more evidence. Here,
we explore the limits of genomic data integration, assessing the
degree to which predictive power increases with addition of more
features. We focus on a predictive context that has been exten-
sively investigated and benchmarked in the past; the prediction
of protein–protein interactions in yeast. Previously, we devel-
oped a Naive Bayesian classification approach to predict protein–
protein interactions in yeast by integrating four genomic features
(functional similarity based on MIPS and GO annotations, mRNA
expression correlation, and coessentiality) (Jansen et al. 2003). By
definition, two proteins interact if they belong to the same com-
plex. The parameters in the Naive Bayes classifier were trained
using a collection of protein pairs known to be interacting or
noninteracting. The advantages of Naive Bayes classifiers are two-
fold. First, the models constructed by Naive Bayes classifiers are
readily interpretable; they represent conditional probabilities
among features and class labels (interaction vs. noninteraction).
Second, Naive Bayes classifiers are very flexible for the highly
heterogeneous genomic features. Numerical features and cat-
egorical features can be easily combined, and missing data can be
readily handled.

In this study, we expand the list of genomic features to
include 16 diverse features that are plausible indicators for pro-

tein interactions. These 16 features are assembled based on both
protein pair features and single protein features, and they are
derived from a wide range of physical, genetic, contextual, and
evolutionary properties of yeast genes. We believe that such “fea-
ture-richness” is an essential property of genomic data sets; there-
fore, we would like to test whether protein-interaction predic-
tions can be further improved by exploiting the diversity of the
features, and if so, by how much.

Naive Bayes classifiers assume conditional independence be-
tween features (see Methods). In the following text, when we say
(in)dependent, we mean conditionally (in)dependent. We would
expect that there exists a high dependence between a number of
genomic features, and that this would become increasingly likely
as we try to integrate more features. In this case, Naive Bayes may
no longer be the optimal approach, as the dependence among
features needs to be taken into account.

In this study, we apply boosting to Naive Bayes classifiers as
an automated and efficient way for handling dependent features.
Boosting (Schapire 1990)—in particular, AdaBoost (Freund and
Schapire 1996)—is a recent development in the field of machine
learning. The process combines the performances of several weak
classifiers to form strong predictions via a weighted majority
vote. In our case, the weak classifiers can be either individual
features or simple Naive Bayes classifiers. Boosting approximately
finds the best linear combination of all possible weak classifiers
via maximum likelihood on a logistic scale (Friedman et al.

Figure 1. (Continued on next page)

Lu et al.

946 Genome Research
www.genome.org



2000), thereby solving potential feature redundancy and statis-
tical dependence problems. By comparing the performance of a
simple Naive Bayes classifier with a boosted Naive Bayes classifier
on our collection of features, we will be able to address whether
or not the dependence among our collection of features—if
any—decreases the Naive Bayes classifier’s predictive power. In
other words, does the Naive Bayes approach perform sufficiently
well at the current level of feature dependence? This comparison
will also be done on a set of highly dependent features as a
control.

Results and Discussion

A list of features useful for predicting protein interactions

In addition to the four features in Jansen et al. (2003), we con-
sider 12 more features as listed in Figure 1. These features are
divided into four categories; each of them is assigned a three-
character identification code for convenient reference. Also in-
cluded in Figure 1 are two gold-standard data sets (GSTDs, posi-
tive and negative sets) that will be used to evaluate features in
subsequent sections. These GSTDs have various degrees of over-
lap with the 16 features. In Figure 1, we present the four catego-
ries of features in the descending order according to the degree of
overlaps with the GSTDs (Fig. 2). For each of them, we shall
describe its biological meanings and the rationale to use it. The

reference to the data source is in the parenthesis that follows the
feature’s name.

Predictive power of individual features

We use ROC curves (see Methods) to illustrate the predictive
power of each individual feature. Figure 2 shows that there is a
distinct difference between the features to the left and right of
the divider in terms of overlapping with the GSTDs (note, Fig. 2
is in log-scale). For this reason, and in the interest of a clear
presentation, we plot the ROC curves in two panels, with the
seven most populous features in one group and the remaining
features in the other (Fig. 3).

A good feature, i.e., one with high predictive power, simul-
taneously has a large number of true positives and a small num-
ber of false positives. In this case, the ROC curve climbs rapidly
away from the origin (lower left hand corner of the graph). How
quickly the ROC curve arises away from the origin can be quan-
tified by measuring the area under the curve. The larger the area,
the better the feature. Ranking the features by the area they cover
in the ROC curves (easily seen in Fig. 3A), the best feature in the
first group is MIP, followed by GOF, COE, EXP, ESS, MES, and
APA. All of these features show strong predictive power (i.e., well
above the diagonal). The best feature in the second group is INT,
followed by PGP, GNN, REG, ROS, and THR, while SYL shows
very little predictive power. EVL and GNC are not shown here

Figure 1. Useful genomic features in prediction of protein interactions.
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because they each have only two overlaps with the positive
GSTD, and are thus unsuitable for this test. Because of the low
coverage of these group-two features, the results in Figure 3B may
be misleading without a careful interpretation. For example, SYL
covers only 887 protein pairs in the GSTDs, it is thus unreliable
to estimate its overall predictive power based on this 0.04% of the
GSTDs when its coverage is likely to increase in the future
(Fig. 3B).

Another point we need to pay attention to is that we should
not take the performance of a feature against the GSTDs as in-
dicative of the accuracy or usefulness of the feature in its original
context. This is because the performance of a feature against the
GSTDs only measures its usefulness in relation to a specific task—
i.e., predicting complex membership—which is probably not
what the feature was originally designed to do. For example,
multimeric threading method is designed for predicting physical
interactions between two proteins. However, because of the way
the GSTDs are constructed, the majority of protein pairs in the
GSTDs are simply in the same molecular complex without direct
contacts. Therefore, when predicting physical interactions, these
GSTDs are not a good means of judging the accuracy or useful-
ness of the multimeric threading method.

Quite often, only the TPR for a specific FPR is valued. For
example, COE outperforms MIP until the FPR reaches 5%, even
though MIP covers more area in the whole range of FPR. Thus,
the features can also be ranked and selected according to the
acceptable FPR in prediction.

Feature selection and improvement of performance

Because of the varying quality and predictive powers of genomic
features, incorporating all features without selection will likely
decrease the predictive power by introducing noise rather than
improving the results. Therefore, we select only those new fea-
tures with high predictive power based on the performance of
individual features. Another factor we need to take into account
is the coverage of features. It is obvious that there is a distinct
difference between the features to the left and right of the divider
in Figure 2; each of the first seven features covers at least a half

million (∼20%) ORF pairs in the GSTDs, while the next most
populous feature (REG) covers only 2%. Even though some of the
features with very low coverage show strong predictive power,
whether or not that predictive power will remain is in question
once the coverage increases in the future. Therefore, at the cur-
rent stage, only the first seven features (i.e., F1–F7) are considered
in the following calculation. The new features are EXP, MES, and
APA.

The performance of combining new features is presented in
Figure 4A by a ROC curve. By integrating the three additional
features in the range of all FPR values, we obtain a better perfor-
mance in the predictive power (higher TPR at a certain FPR value)
than by integrating the four original features. However, such
improvement is marginal; although each of the three new fea-
tures shows a fairly strong predictive power, the increase of TPR
at any value of FPR is no more than 3%.

Because of the dominant performance of the two functional
similarity features (MIP and GOF), the improvement accom-
plished by incorporating new features may not seem obvious. We
thus exclude these two functional features, showing the im-
provement by incorporating three additional features over the

Figure 3. Predictive power of individual features illustrated by ROC
curves. We plot ROC curves for individual features in two panels; the
seven most populous features in A, and the remaining nine features in B.
The acronyms signify the following: (TPR) True positive rate; (FPR) false
positive rate; (TP) true positives; (FP) false positives; (P) total number of
positives; (N) total number of negatives (see Methods).

Figure 2. Overlaps between features and GSTDs. The blank and
shaded columns represent the size of overlaps between the 16 features
and the GSTD+ and GSTD�, respectively. The total numbers of protein
pairs in the GSTD+ (8250) and GSTD� (2,708,622) are marked by two
horizontal lines. Each of the seven features to the left of the dashed divider
has at least 20% coverage of the GSTDs (positive and negative com-
bined). Note that the plot is in log-scale; therefore, the APA column
actually represents 23 times more protein pairs than REG column.
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remaining two original features (i.e., COE and ESS). Including
three additional features shows a significant improvement over
the original two features (Fig. 4B).

Another benefit of genomic data integration is the improve-
ment in coverage; by incorporating more features, two predictors
with similar ROC curve performance may cover different parts of
the system to varying degrees. Note, it is the coverage of not only
the labeled pairs (GSTDs), but also unlabeled pairs (unseen pairs).
So far, our assessments have been done for labeled pairs only;
however, if additional features allow the predictor to have a more
extensive view of the system despite no significant improvement
in ROC curve, they probably should be considered as beneficial,
because in this case, the coverage of unlabeled pairs is improved.
Here, we find the coverage is slightly improved by integrating
more features. For all possible 21,658,071 protein pairs (6582
ORFs from MIPS), the four original features cover 18,527,741

pairs (85.5%), whereas the seven most populous features cover
18,880,102 (87.2%).

Correlations and statistical dependence between features

In this section, we investigate whether or not the marginality of
improvement is confounded by the correlation and dependen-
cies between features.

We first calculate the Pearson correlation coefficients (CCs)
between each pair of features. Such correlations between features
can often generate useful biological insights. The five highest
absolute values are highlighted in bold in Table 1A. None of the
feature pairs exhibit significant correlation.

In addition, we calculate mutual information between ge-
nomic features as an alternative to CCs. Whereas CC only mea-
sures linear relationships, mutual information is a more general
measure of correlation. The results show an agreement with Ccs.
The five pairs containing the most mutual information are ex-
actly the same as those of the CCs. These correlations between
some of the features, albeit not strong, are expected. For example,
the correlations between the two functional features (MIP and
GOF) are the highest among feature pairs. It is also expected that
absolute mRNA expression (EXP) and absolute protein abun-
dance (APA) are somewhat correlated.

We next investigate the conditional dependence between
features given the positive or negative GSTD by calculating mu-
tual information. In other words, we calculate the mutual infor-
mation between pairs of features by taking into account only
protein pairs that occur in both features and in either set of
GSTDs. The small amount of mutual information, given either
set of GSTDs, indicates that the features we integrated by Naive
Bayes classifier are largely conditionally independent (Table 1B).

Simple Naive Bayes classifier vs. boosted Naive Bayes classifier
on data sets with or without high dependence

Even though the conditional dependence between our features is
not strong, it is possible that the combined weak dependence can
still significantly decrease the predictive power of a Naive Bayes
classifier. In this section, we address this question by comparing
the performance of a simple Naive Bayes classifier (SNB) with
that of a boosted Naive Bayes classifier (BNB). Since a BNB is fairly
resistant to feature dependence, a significantly worse perfor-
mance by a SNB on the same data set means that the feature
dependence does affect the predictive power of the SNB.

We first conduct a control experiment with highly depen-

Table 1A. Absolute values of Pearson Correlation coefficients and
mutual information between genomic features

CCs

MI�100 COE MIP GOF ESS EXP MES APA GSTDs

COE 0.08 0.08 0.05 0.04 0.00 0.03 0.11
MIP 0.45 0.37 0.08 0.04 0.05 0.02 0.21
GOF 0.69 10.97 0.13 0.05 0.04 0.04 0.18
ESS 0.63 1.58 2.05 0.01 0.13 0.00 0.05
EXP 0.17 0.26 0.30 0.05 0.03 0.37 0.03
MES 0.03 0.51 0.58 7.31 0.12 0.01 0.03
APA 0.12 0.06 0.19 0.04 8.81 0.06 0.02
GSTDs 0.71 2.01 3.30 0.21 0.09 0.08 0.02

(CCs) Pearson Correlation coefficients; (MI) mutual information; (GSTDs)
gold-standard data set. The five highest absolute values in each category
are highlighted in bold.

Figure 4. Integration of three additional features versus: (A) Four origi-
nal features. Integration of three additional features (EXP, MES, APA)
shows an improvement over the original four features at all range of FPRs.
(B) Two original features. By excluding the two strongest features (MIP,
GOF), it becomes more obvious that integrating three additional features
outperforms the original two features. The insets are a closer look at the
small FPR region by taking a log-scale of the x-axis. TPR, FPR, TP, FP, P, N
are the same as in Figure 3.
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dent features to verify the resistance of BNB to feature depen-
dence. To obtain a highly dependent set of features, we used
mRNA expression data from microarray experiments conducted
by Cho et al. (1998) under eight different conditions. Such
expression data are highly dependent with regard to high CCs—
the minimum CC between each pair of conditions is 0.904,
the maximum CC is 0.970. Treating these eight sets of expres-
sion data as if they were eight features, we integrate them with
the original four features. When evaluated on this highly depen-
dent data set, the BNB significantly outperforms the SNB. Figure
5 shows the robustness of the BNB on this highly dependent
data set.

We then compare a SNB with a BNB on our data set, with
only weak conditional dependence; the original four features
plus only one instead of eight sets of expression data. If the BNB
significantly outperforms the SNB, it indicates that the SNB is
affected by feature dependence, even though it is not strong. The
results show that the SNB performs as well as the BNB on this
weakly dependent data set (Fig. 5). Clearly, the SNB is hardly
affected by this weak feature dependence.

The results in Figure 5 also suggest that the SNB performs
sufficiently well on our collection of genomic features, while
the BNB may be useful to analyze the potential problem of
highly dependent features as more features are considered in the
future.

Conclusions

In this study, we quantitatively address the question of how far
genomic data integration can be improved by integrating more
and more features. We use a SNB for integrating diverse sources
of genomic evidence, ranging from coexpression relationships to
similar phylogenetic profiles. By integrating three more strong
features, marginal improvement on both accuracy and coverage
can be achieved.

The calculations of correlation coefficients, mutual informa-
tion, and boosting all suggest that the marginality of the im-
provement on prediction by incorporating more features is un-
likely to result from the weak feature dependencies. It is also
unlikely to result from an excess of parameters, relative to data
points (resulting in overfitting), because our Naive Bayes ap-
proach involves simple models with only small numbers of free
parameters that are fitted against a large number of data points.
Rather, this suggests that by integrating a few good features, we

approach the maximal predictive power, or limit, of current ge-
nomic data integration. Furthermore, this limitation does not
reflect (potentially removable) inter-relationships between the
features. Unless we obtain features that are stronger in predictive
power than MIP and GOF and simultaneously possess a reason-
able coverage, it is unlikely that the prediction will be signifi-
cantly improved by integrating a few more features. It is also
possible that a higher coverage of our examined 16 features may
allow better predictive power in the future.

Our discovery that no strong dependence exists between
features is an interesting finding in and of itself. Among as many
as seven populous features, one might expect some dependence
high enough to significantly decrease SNB’s predictive power.
However, our calculation on correlation coefficients and mutual
information, as well as our boosting results, suggest otherwise.
One possibility is that the observed lack of dependence among
different features may result from differences in coverage, since
all of these data sets are essentially incomplete. Specifically, the
overlap of proteins or protein pairs represented among the dif-
ferent features is likely to increase with extended coverage and
possibly results in higher feature dependence. In this case, the
BNB can be used as an alternative solution.

Finally, SNB is chosen in this study because of its simplicity,
as well as the ability to compare with an existing benchmark
study using the same technique (Jansen et al. 2003). Further-
more, we use BNB to specifically address SNB’s well-known limi-
tation relating to high feature dependency.

Other machine-learning techniques could have been poten-
tially used in this study. However, most alternative techniques
have issues in their own right, such as suffering from the mis-
sing value problems or being prohibitively time-consuming.
Such problems prevent them from being applied to this problem
as readily as a SNB. In addition, since BNB does not improve
SNB on our collection of features, it is probably not the case
that the conclusions made here will be significantly different
if other machine-learning techniques are used—though, of
course, we cannot definitely say this without a comprehensive
test.

Table 1B. Conditional mutual informationa between
genomic features

POS�100

NEG�100 COE MIP GOF ESS EXP MES APA

COE 22.64 29.88 7.11 15.29 12.09 14.70
MIP 0.17 59.01 16.26 6.31 9.40 6.26
GOF 0.34 8.24 28.16 5.73 11.18 5.81
ESS 0.78 0.90 0.78 2.09 20.67 2.81
EXP 0.14 0.38 0.58 0.05 8.86 12.75
MES 0.07 0.55 0.73 6.74 0.20 9.65
APA 0.10 0.05 0.22 0.05 10.62 0.09

(CCs) Pearson Correlation coefficients; (MI) mutual information; (GSTDs)
gold-standard data sets; (POS) GSTD+; (NEG) GSTD�.
aFor a given feature pair, conditional mutual information for the GSTD+
(GSTD�) is computed by considering only protein pairs in the GSTD+
(GSTD�). The five highest absolute values in each category are high-
lighted in bold.

Figure 5. A SNB versus a BNB over sets of genomic features with or
without high dependence. TPR, FPR, TP, FP, P, and N are the same as in
Figure 3.
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Methods

Naive Bayesian formalism
Inferring protein–protein interactions from genomic features can
be formulated as a classification problem, in which we classify a
pair of proteins into two classes (C1 = interact, C0 = not interact),
given an n -dimensional vector of genomic features
x = (x1,x2,…,xn).5

The Bayesian Decision Rule states that in order to minimize
the average probability of a classification error, one must choose
the class with the highest posterior probability, i.e., assign a fea-
ture vector x to the class Ck, such that: Ck = argCi

max P(Ci | x),
where Ci ranges over the set of classes (see for example, Bishop
1995; Duda et al. 2001). Ck is known as the maximum a posteriori
(MAP) estimate.

Using Bayes theorem, the posterior probability can be re-
written, as

P�Ck | x� =
p�x | Ck� � P�Ck�

p�x�
.

Notice that the unconditional density p(x) in the denominator
does not depend on the class label; therefore, it does not affect
the classification decision and can be omitted when computing
Ck = argCi

max P(Ci | x). Each of the priors, P(Ci), can be easily
estimated by computing the frequency with which each class
occurs in the data. However, the evaluation of p(x | Ci) cannot
generally be accomplished in the same way, especially if the
number of features is high; it would require a set of data large
enough to contain many instances for each possible combina-
tion of feature values, in order to obtain reliable estimates.

The idea behind Naive Bayes is to make the simplifying as-
sumption that the attribute values are conditionally indepen-
dent, given the target values. The computation of each is thus
made efficient by approximating it as a product of conditional
probabilities

p�x | Ci� = p�x1, x2, . . . ,xn | Ci�

≈ p�x1 | Ci�p�x2 | Ci� . . . p�xn | Ci�

= �
j

p�xj | Ci�. (1)

Learning in Naive Bayes consists of estimating the various P(Ci)
and various p(xj | Ci) using equation 1, based on their frequencies
over the training data. Clearly, the approximation in equation 1
becomes exact only in the event of stochastic independence be-
tween the various features, given the class. In spite of its simple
way of approximating the posterior distributions, Naive Bayes
has, in practice, yielded quite good results for several types of
problems; for example, it is among the best methods for text
classification (Joachims 1997; McCallum and Nigam 1998).

In the case of stochastic independence, the covariance be-
tween two features is zero. Thus, the covariance between features
is a measure of the deviation from the condition of stochastic
independence and is indicative of the amount of approximation
introduced by the Naive Bayes assumption. For this reason, the
next section shall present an analysis of the covariance between
the various features, given the class.

Alternatively, the Bayesian Decision rule for two classes can
be stated thusly:

● If
p�x | C1� � P�C1�

p�x | C0� � P�C0�
>1 then choose class C1 (2)

● Otherwise, choose class C0.
If we then introduce the Naive Bayes approximation, we can

rewrite equation 2 as:

p�x1 | C1� � p�x2 | C1� . . . p�xn | C1� � p�C1�

p�x1 | C1� � p�x2 | C0� . . . p�xn | C0� � p�C0�
> 1; L1 � L2 � . . . � Ln

>
P�C0�

P�C1�
(3)

where

Li ≡
p�xi | C1�

p�xi | C0�

and are called Likelihood Ratio for feature i. Notice that for a
given feature, a likelihood ratio different than 1 indicates that
the feature conveys information about the class. In other words,
there is a correlation between the feature and the target. For this
reason, in the next section we shall look at the likelihood ratios
of the various features and the correlation between such features
and the class labels.

ROC (receiver operating characteristic) curve
In a two-class classification problem, with classes C1 (or positive)
and C0 (or negative), for each prediction there are four possible
outcomes. The true positives (TP) and the true negatives (TN) are
correct classifications. Wrong classifications can be of two types.
For a false positive (FP), the outcome is incorrectly predicted as
belonging to C1, when in fact it belongs to C0; for a false negative
(FN), the outcome is incorrectly predicted as belonging to C0,
when it belongs to C1.

Our earlier discussion on Naive Bayes was motivated by the
goal of minimizing the average probability of a classification er-
ror; it was aimed at reducing the total number of wrong predic-
tions, regardless of the type of error that was made. This amounts
to saying that we were maximizing the number of

TP + TN
TP + TN + FP + FN

.

In general, however, the two different types of errors will have
different costs, just as the two different types of correct classifi-
cation will have different benefits. Taking such costs into ac-
count amounts to multiplying the right hand side of equation 3
by a cost factor. In practice, these costs are rarely known with
accuracy. Thus, to evaluate a classification method, it is useful to
look at its ROC curve.

A ROC curve graphically depicts the performance of a clas-
sification method for different costs. It consists of a set of points,
each computed for a different setting of the cost, connected by
lines. For each point, the vertical coordinate is a true positive rate
(TPR) given by the ratio of the number of true positives to the
total number of positives (i.e., TP/[TP+FN]), while the horizontal
coordinate is a false positive rate (FPR) given by the ratio of the
number of false positives to the total number of negatives (i.e.,
FP/[FP+TN]). Note that the TPR is equivalent to the commonly
used term sensitivity, while FPR is equivalent to 1—specificity.
Clearly, the ROC curve for a good classifier will be as close as
possible to the upper-left corner of the chart; that is where we
have the highest number of true positives and at the same time
the smallest number of false positives.

5Bold letters denote vectors; P(·) denote probabilities; p(·) denote probability
density functions.
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Mutual information
Given two random variables, X and Y (in this study, X and Y are
either feature values or class labels), the Mutual Information I(X;
Y) between X and Y measures how much information one vari-
able conveys about the other one. It is defined as the relative
entropy (or Kullback-Leibler distance) between the joint distri-
bution and the product distribution of X and Y, that is

I�X;Y� = �
x
�

y
P�x, y�log

P�x, y�

P�x�P�y�
,

where P(x, y) indicates the joint distribution of X and Y and P(x)
and P(y) their marginal distributions. It is easy to prove that
I(X;Y) = H(X) � H(X|Y) = H(Y) � H(Y|X) = I(Y;X), where H(X)
and H(Y) are the entropies of X and Y, and H(X|Y) and H(Y|X) are
the conditional entropies of X given Y and Y given X, respec-
tively. This states that the information Y conveys about X is the
reduction in uncertainty about X, due to knowledge of Y (and
vice-versa).

Boosting
Boosting is a general method that can be used for improving the
performance of any classifier. The idea behind boosting is to
combine the outputs of many different “weak” classifiers to pro-
duce a powerful “committee.” We have used one of the most
popular boosting algorithms, AdaBoost (Freund and Schapire
1999), which we shall briefly describe here. For more information
on this and other boosting algorithms refer to Friedman et al.
2000.

AdaBoost consists of sequentially applying a weak classifi-
cation algorithm to modified versions of the data, producing a
sequence of weak classifiers. Then, the prediction from each clas-
sifier is combined through a weighted majority vote. The data is
modified by applying weights to each of the training observa-
tions. At each iteration, a weak learner is trained on the weighted
set of data and the weights are updated. This operation is re-
peated until the desired performance for the training data is
achieved. The updating rule for these weights is such that train-
ing pairs that had been misclassified in the previous step will
have their weights increased, while those that were correctly clas-
sified will have their weights decreased. At each iteration, then,
training pairs that are more difficult to classify have more influ-
ence, and classifiers are forced to focus on pairs overlooked by
previous classifiers.

Given a data set of N training pairs (xi,yi), i = 1…N, where xi

is an input vector of features and yi � {�1,1} is the target value
representing classes C0 and C1, respectively, let us denote the
weight associated with training pair i at time t as Dt(i), and the
weak classification algorithm used at time t as ht. The AdaBoost
algorithm to iterate T times is as follows:

● Initialize the observation weights for each pair

D1 �i� =
1
N

● For t = 1…T do:

1. Train ht using the training pairs weighted by Dt

2. Compute Et, the global error of ht as:

Et = �
i:ht�xi��yi

Dt �i�

3. Set �t =
1
2

ln�1 − Et

Et
�

4. Dt+1 �i� =
Dt �i� � e−�tytht�xi�

Zt

where Zt is a normalization factor such that

�
i

Dt+1 �i� = 1

● The output of the final classifier is:

H�x� = sign��
t=1

T

�tht �x��
Training and testing data sets
The details of construction of the training and testing data sets
are described in Figure 1.
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