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Abstract

The recent explosion of genomic-scale protein interaction screens has made it possible to

study protein interactions on a level of interactome and networks. In this chapter, we begin

with an introduction of a novel approach that probabilistically combines multiple information

sources to predict protein interactions in yeast. Specifically, Section 5.2 describes the sources

of genomic features. Section 5.3 provides a basic tutorial on machine-learning approaches and

describes in detail the decision tree and naı̈ve Bayesian network that have been used in above

study. Section 5.4 discusses the missing value challenges in further development of our

existing method. We then shift our attention to discuss protein–protein interactions in the

context of networks in Section 5.5, where we present two important network analysis

approaches: topology network analysis and modular network analysis. Finally we discuss

advantages and key limitations of our method, and our vision of challenges in this area.
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5.1 Introduction

Protein–protein interactions are fundamental to cellular functions, and comprehen-

sively identifying them is important towards systematically defining the biological

role of proteins. New experimental and computational methods have produced a vast

number of known or putative interactions catalogued in databases, such as MIPS

(Mewes et al., 2002), DIP (Xenarios et al., 2002) and BIND (Bader et al., 2001).

Unfortunately, interaction datasets are often incomplete and contradictory (von

Mering et al., 2002, Edwards et al., 2002). In the context of genome-wide analyses

these inaccuracies are greatly magnified because the protein pairs that do not interact

(negatives) far outnumber those that do (positives). For instance, in yeast the �6000

proteins allow for �18 million potential interactions, but the estimated number of

actual interactions is below 100 000 (von Mering et al., 2002; Bader and Hogue,

2002; Kumar and Snyder, 2002). Thus, even reliable techniques can generate many

false positives when applied on a genomic scale. An analogy to this situation would

be a diagnostic with a one per cent false-positive rate for a rare disease occurring in

0.1 per cent of the population, which would roughly produce one true positive for

every 10 false ones. Consequently, when evaluating protein–protein interactions, one

needs to integrate evidence from many different sources to reduce errors (Marcotte

et al., 1999; Jansen et al., 2002).

In the era of post-genomic biology, it becomes particularly useful to think of cells

as a complex network of interacting proteins (Eisenberg et al., 2000; Hartwell et al.,

1999). Biology is increasingly moving from the study of the individual parts of the

system separately to the study of the emergent properties of the entire system. Most

biological functions are the result of the interactions of many different molecules.

The challenge of systems biology is to develop models of biological functions that

incorporate and elucidate this complexity.

This chapter has thus been written with the aim of introducing our recent

development of a naı̈ve Bayes approach in the protein complex membership

prediction, and recent progress in the protein interaction network analysis. The first

half of the chapter will provide a detailed description of the naı̈ve Bayesian approach

developed by Jansen et al. (2003) that probabilistically combines multiple informa-

tion sources to predict protein interactions in yeast. We begin with Section 5.2, which

describes the genomic features used in this approach. Section 5.3 provides a basic

tutorial on machine-learning approaches and describes in detail the decision tree and

naı̈ve Bayes classifier that has been used in the above study. Section 5.4 discusses

the missing value challenges in further development of our existing method. In the

second half of the chapter, we shift our attention to discuss protein–protein interac-

tions in the context of networks. Section 5.5 focuses on two important network

analysis approaches: topology network analysis and modular network analysis (Rives

and Galitski, 2003). A useful network visualization tool, TopNet (Yu et al., 2004),

will also be introduced. Finally, we will discuss advantages and limitations of our

method, and our vision of challenges in this area.
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5.2 Genomic Features in Protein Interaction Predictions

Jansen et al. recently showed how protein complexes can be predicted de novo with

high confidence when multiple datasets are integrated and demonstrated the applica-

tion to yeast. These multiple datasets can be either noisy interaction datasets or

circumstantial genomic evidence. The genomic data sources used in above study are

the correlation of mRNA amounts in two expression datasets, two sets of information

on biological function and information about whether proteins are essential for

survival (see below). Although none of these information sources are interaction

per se, they contain information weakly associated with interaction: two subunits of

the same protein complex often have co-regulated mRNA expression and similar

biological functions and are more likely to be both essential or non-essential.

mRNA expression

Two sets of publicly available expression data – a time course of expression

fluctuations during the yeast cell cycle and the Rosetta compendium, consisting of

the expression profiles of 300 deletion mutants and cells under chemical treatments

(Cho et al., 1998; Hughes et al., 2000) – have been used in the above study. These

data are useful for the prediction of protein–protein interaction because proteins in

the same complex are often co-expressed (Ge et al., 2001). The Pearson correlation

for each protein pair for both the Rosetta and cell cycle datasets indicates that these

two datasets are strongly correlated. This problem can be circumvented by computing

the first principal component of the vector of the two correlations. This first principal

component is a stronger predictor of protein–protein interactions than either of the

two expression correlation datasets by themselves. In order to perform Bayesian

networks analysis (see Section 5.3), this first principal component of expression

correlations is divided into 19 bins, and the overlap of each bin with the gold

standard is assessed (Table 5.1). The first column of Table 5.1 bears the name of the

genomic feature and the number of bins we divide this feature into. The second

column gives the number of protein pairs that this feature covers in the yeast

interactome (�18 million pairs of proteins). The third column, which contains five

subcolumns, shows the overlap between the genomic feature and the gold-standard

(positive and negative) sets. The subcolumns positive (þ) and negative (�) show how

many protein pairs in the present bin of the genomic feature are among the protein

pairs in the gold-standard positive set and negative set, respectively. The subcolumns

sum(þ) and sum(�) show the cumulative number of overlaps of the present and

above bins. The subcolumn sum(þ)/sum(�) is the ratio of sum(þ) and sum(�).

The next two columns are the conditional probabilities of the feature, and the last

column is the likelihood ratio L, which is the ratio of the conditional probabilities in

the two preceding columns. More details on the likelihood ratio are given in

Section 5.3.
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Biological functions

Interacting proteins often function in the same biological process (Schwikowski, Uetz

and Fields, 2000; Vazquez et al., 2003). This means that two proteins acting in the

same biological process are more likely to interact than two proteins involved in

different processes. In addition, proteins functioning in small, specific biological

processes are more likely to interact than those functioning in large, general processes.

Two catalogues of functional information about proteins are collected from the

MIPS functional catalogue – which is separate from the MIPS complexes catalogue –

and the data on biological processes from Gene Ontology (GO) (Ashburner et al.,

2000). Most classification systems have the structure of a tree (e.g. MIPS) or a

directed acyclic graph (DAG) (e.g. GO). Obviously, a pair of proteins should be very

similar if there are only a few descendants of a given ancestor, whereas the similarity

will be less significant if many proteins descend from it. Given two proteins that share

a specific set of lowest common ancestor nodes in the classification structure, one can

count the total number of protein pairs n that also have the exact same set of lowest

common ancestors. This number is expected to be low for proteins that share a very

detailed functional description, but very high for proteins that have no function in

common. For instance, if a functional class contains only two proteins, then the count

would yield n¼1. On the other hand, if the root node is the lowest common ancestor

of two proteins, n is on the order of the number of protein pairs contained in the

classification.

The functional similarity between two proteins is thus quantified by the following

procedure. First, two proteins of interest are assigned to a set of functional classes two

proteins share, given one of the functional classification systems. Then the number of

the �18 million protein pairs in yeast that share the exact same functional classes as

the interested protein pairs is counted (yielding a count between 1 and �18 million).

In general, the smaller this count, the more similar and specific is the functional

description of the two proteins, while large counts indicate a very non-specific

functional relationship between the proteins. Low counts (i.e. high functional

similarity) are found to correlate with a higher chance of two proteins being in the

same complex (Table 5.1).

Essentiality

Protein essentiality is also considered in the study (Mewes et al., 2002). It should be

more likely that both of two proteins in a complex are essential or non-essential, but

not a mixture of these two attributes. This is because a deletion mutant of either one

protein should by and large produce the same phenotype: they both impair the function

of the same complex. Indeed, such a relationship is supported by the data (Table 5.1).

Finally, protein–protein interaction datasets generated by high-throughput experi-

ments can also be seen as a special type of genomic feature.
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Gold-standard datasets

The basic idea of how to integrate different sources of information is to assess each

source of evidence for interactions by comparing it against samples of known

positives and negatives, yielding a statistical reliability. Then, extrapolating

genome-wide, the chance of possible interactions for every protein pair can be

predicted by combining each independent evidence source according to its reliability.

Thus, reliable reference datasets that serve as gold standards of positives (proteins

that are in the same complex) and negatives (proteins that do not interact) are

essential.

An ideal gold-standard dataset should satisfy the three following criteria: (1)

independent from the data sources serving as evidence, (2) sufficiently large for

reliable statistics and (3) free of systematic bias. It is important to note that different

experimental methods carry with them different systematic errors – errors that cannot

be corrected by repetition. Therefore, the gold-standard dataset should not be

generated from a single experimental technique. Positive gold standards are extracted

from the MIPS (Munich Information Center for Protein Sequences) complexes

catalogue (version November 2001). It consists of a list of known protein complexes

based on the data collected from the biomedical literature (most of these are derived

from small-scale studies, in contrast to the high-throughput experimental interaction

data). Only classes that are on the second level of MIPS complex code are considered.

For instance, the MIPS class ‘translation complexes’ (500) contains the subclasses

‘mitochondrial ribosome’ (500.60), the ‘cytoplasmic ribosome’ (500.40) and a

number of other subclasses related to translation-related complexes; we only

considered pairs among proteins in those subclasses (500.*) as positives. Overall,

this yielded a filtered set of 8250 protein pairs that are within the same complex.

A negative gold standard is harder to define, but essential for successful training.

There is no direct information about which proteins do not interact. However, protein

localization data provide indirect information if we assume that proteins in different

compartments do not interact. A list of �2.7 million protein pairs in different

compartments are compiled from the current yeast localization data in which proteins

are attributed to one of five compartments as has been done previously (Drawid and

Gerstein, 2000). These compartments are the nucleus (N), mitochondria (M),

cytoplasm (C), membrane (T for transmembrane), and secretory pathway (E for

endoplasmic reticulum or extracellular).

5.3 Machine Learning on Protein--Protein Interactions

Awide spectrum of supervised methods can be applied to integrate genomic features

in order to predict protein–protein interactions (see Chapter 12 for a revisit). Among

them, machine-learning approaches, including simple unions and intersections of

datasets, neural networks, decision trees, support-vector machines and Bayesian
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networks have been successfully applied to this goal. Below we try to elaborate basic

concepts in machine learning, and provide a basic tutorial on how to employ decision

trees and Bayesian networks in protein–protein interaction analysis.

According to Merriam-Webster’s Collegiate Dictionary, learning is a process in

which people ‘gain knowledge or understanding of or skill in by study, instruction, or

experience’. The key idea of ‘learning’ is to perform better based on past experience.

Even since computers were invented, people have tried to make computers to learn

(i.e. machine learning). Precisely, ‘a computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P, if

its performance at tasks in T, as measured by P, improves with experience E’

(Mitchell, 1997). For example, researchers have used computer programs to recog-

nize tumours based on biopsy results:

� task T, to determine whether an examinee has cancer or not

� performance measure P, percentage of correct predictions

� training experience E, biopsy results from cancer patients and normal people.

Let X and Y denote the sets of possible inputs and outputs. The learning algorithm

needs to find the (approximate) target function V that takes each input xi 2 X and

gives the corresponding prediction yi 2 Y , i.e. output. If Y is a subset of the real

numbers, we have a regression problem. Otherwise, we have a classification problem

(binary or multiclass). In this case, the algorithm will determine whether a patient has

cancer based on his/her biopsy result, which is a binary classification problem. There

are, of course, other learning problems (e.g. reinforcement learning). Here, we are

mainly interested in classification problems.

Why do we need machine learning? First, for many complicated problems, there is

no known method to compute the accurate output from a set of inputs. Second, for

other problems, computation according to known exact methods may be too

expensive. In both cases, good approximate methods with reasonable amounts of

computational demand are desired. Machine learning is a field in which computer

algorithms are developed to learn approximate methods for solving different

problems. Obviously, machine learning is a multidisciplinary field, including com-

puter science, mathematics, statistics and so on.

Supervised learning versus unsupervised learning

Learning algorithms are usually divided into two categories: supervised and unsu-

pervised. In supervised learning, a set of input/output example pairs is given, which is

called the training set. The algorithms learn the approximate target function based on the

training set. Once a new case comes in, the algorithms will calculate the output value

based on the target function learned from the training set. By contrast, in unsupervised

learning, a set of input values are provided, without the corresponding output. The
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learning task is to gain understanding of the process that generates input distribution.

In this section, we will focus our discussion on supervised learning algorithms.

Decision trees

Decision tree learning is one of the most widely used algorithms to search for the

best discrete-valued hypothesis (h) within H. Figure 5.1 illustrates a decision tree for

the protein–protein interaction classification. Only the yeast protein pairs without

missing values in genomic features and in gold-standard sets are considered. The

decision tree tries to predict protein–protein interactions based on three genomic

features using the ID3. S is a set of examples, in this case a collection of the protein

pairs. E stands for entropy and G stands for information gain calculated according to

the formula (5.1). Each diamond node is one attribute or genomic feature. This

decision tree is constructed from the genomic features and gold-standard interactions

described in Section 5.2. The learned decision tree classifies a new instance by going

down the tree from the root to a certain leaf node. Each leaf node provides a

classification for all instances within it. A test of a specific attribute is performed at

each node, and each branch descending from that node corresponds to one of the

possible values for this attribute.

The basic idea behind decision tree learning is to determine which attribute is the

best classifier at a certain node to split the training examples. Many algorithms have

Figure 5.1 A typical decision tree
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been developed to solve this problem, such as ID3, C4.5, ASSITANT and CART.

Here, we focus on the ID3 algorithm (Quinlan, 1986).

In order to determine the best classifier, ID3 uses a statistical property, named

information gain, to measure how well a given attribute separates the training

examples with respect to the target classification. To define information gain, we

need to introduce the concept of entropy (E) in information theory. Entropy is

used to measure the impurity of a set of examples, which is calculated by the formula

EðSÞ � �pþ log2 pþ � p� log2 p� ð5:1Þ

where S is a set of examples (positives and negatives) regarding some target concept.

pþ is the proportion of positives in S and p� is the proportion of negative in S. There

are 1858 positives and 172368 negatives in the example shown in Figure 5.1.

Therefore, the entropy is

Eð½1858þ; 172368��Þ ¼ � 1858

174226
log2

1858

174226

� �
� 172368

174226
log2

172368

174226

� �
¼ 0:0852:

More generally, if the target concept can take on n different values (i.e. n different

classes), the entropy of S relative to this n-wise classification is defined as

EðSÞ �
Xn
i¼1

�pi log2 pi ð5:2Þ

where pi is the proportion of S belonging to class i.

Having defined entropy, we can now define information gain (G):

GðS;AÞ � EðSÞ �
X

v2valuesðAÞ

jSvj
jSj EðSvÞ ð5:3Þ

where A is an attribute associated with each instance. values (A) is the set of all

possible values that A could take on. v is an element of values (A). Sv is the set of

instances whose value of A is v. Clearly, Sv is a subset of S.

The information gain measures the deduction of the impurity (entropy) of the

training examples with respect to the target concept if they are split by a certain

attribute. Therefore, the higher the information gain of an attribute, the better it

classifies the examples. As a result, ID3 uses the value of the information gain to

choose the best classifier at each node. For the training examples in Figure 5.1, the

information gain values for all three attributes are

GðS;MIPS functionÞ ¼ 0:0365

GðS;GO functionÞ ¼ 0:0216

GðS;mRNA expressionÞ ¼ 0:0088
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The attribute ‘MIPS function’ has the highest value. Therefore, it is the root node in

Figure 5.1. The same procedure is iterated for the child nodes, then the child nodes of

these nodes, and so on. Each attribute can only be used once along each path. A path

is terminated if either of the following two conditions is met: (1) all elements of the

leaf node belong to the same class with respect to the target concept; (2) every

attribute has appeared in the path. The whole tree is completed if all paths have been

terminated. One complexity is that ID3 can only handle nominal attributes. If there

are attributes with continuous values, such attributes could be used twice with

different cut-offs along the same path.

Naı̈ve Bayes classifier

Besides decision tree learning, another commonly used method is naı̈ve Bayes

learning, often called the naı̈ve Bayes classifier. It is also applied to the kind of

data in which each instance is associated with a set of nominal attributes. The naı̈ve

Bayes classifier assigns the most probable target value to the instance with the

attribute values h f1; f2; . . . ; fni:

h ¼ arg max
hj2H

Pðhj j f1; f2; . . . ; fnÞ ð5:4Þ

Using the Bayes theorem, the formula can be rewritten as

h ¼ arg max
hj2H

Pð fl; f2; . . . ; fn j hjÞPðhjÞ
Pðfl; f2; . . . ; fnÞ ¼ arg max

hj2H
Pð fl; f2; . . . ; fn j hjÞPðhjÞ ð5:5Þ

The most important assumption in naı̈ve Bayes learning is that all attributes are

conditionally independent with each other with respect to every hypothesis hj.

Therefore, the joint probability of all attributes is the product of the individual

probability:

h ¼ arg max
hj2H

PðhjÞ
Yn
i¼1

Pð fi=hjÞ ð5:6Þ

The Bayesian approach has been widely used in biological problems. Jansen et al.

(2003) described an approach using Bayesian networks to predict protein–protein

interactions. A pair of proteins that interact is defined as ‘positive’. Given some

positives among the total number of protein pairs, the ‘prior’ odds of finding one

are

Oprior ¼ PðposÞ
PðnegÞ ¼

PðposÞ
1� PðposÞ ð5:7Þ
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In contrast, ‘posterior’ odds are the chance of finding a positive after considering N

features with values f1 � � � fn:

Opost ¼ Pðpos j f1 � � � fnÞ
Pðneg j f1 � � � fnÞ ð5:8Þ

(The terms ‘prior’ and ‘posterior’ refer to the situation before and after knowing the

information in the N features.) The likelihood ratio L is defined as

Lðf1 � � � fNÞ ¼ Pð f1 � � � fn j posÞ
Pðf1 � � � fn j negÞ ð5:9Þ

It relates prior and posterior odds according to Bayes’ rule, Opost ¼ Lðf1 � � � fnÞOprior.

In the special case where the N features are conditionally independent (i.e., they

provide uncorrelated evidence), the Bayesian network is a so-called ‘naı̈ve’ network,

and L can be simplified to

Lð f1 � � � fnÞ ¼
YN
i¼1

Lð fiÞ ¼
YN
i¼1

Pð fi j posÞ
Pð fi j negÞ ð5:10Þ

L can be computed from contingency tables relating positive and negative examples

with the N features (by binning the feature values f1 � � � fn into discrete intervals).

Simply put, consider a genomic feature f expressed in binary terms (i.e. ‘present’ or

‘absent’). The likelihood ratio L( f ) is then defined as the fraction of gold-standard

positives having feature f divided by the fraction of negatives having f. For two

features f1 and f2 with uncorrelated evidence, the likelihood ratio of the combined

evidence is simply the product L(f1, f2) ¼ L(f1)L(f2). A protein pair is predicted as

positive if its combined likelihood ratio exceeds a particular cut-off (L > Lcutoff)

(negative otherwise). The likelihood ratios are computed for all possible protein pairs

in the yeast genome. Based on previous estimates, we think that 30 000 positives is a

conservative lower bound for the number of positives (i.e. pairs of proteins that are in

the same complex). Given that there are approximately 18 million protein pairs in

total, the prior odds would then be about 1 in 600. With L > Lcutoff ¼ 600 we would

thus achieve Opost>1.

Cross-validation with the reference datasets shows that naı̈ve Bayesian integration

of multiple genomic sources leads to an increase in sensitivity over the high-

throughput data sets it combined for comparable true positive (TP)/false positive

(FP) ratios. (‘Sensitivity’ measures coverage and is defined as TP over the number of

gold-standard positives, P.) This means that the Bayesian approach can predict, at

comparable error levels, more complex interactions de novo than are present in the

high-throughput experimental interaction datasets. The predicted dataset (PIP) was

also compared with a voting procedure where each of the four genomic features
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contributes an additive vote towards positive classification. The results showed that

the Bayesian network achieved greater sensitivity for comparable TP/FP ratios

(Jansen et al., 2003).

5.4 Missing Value Problem

The naı̈ve Bayes procedure presented above leads itself naturally to the addition of

more features, possibly further improving results. As more sparse data are incorpo-

rated, however, the missing value problem becomes severe: the number of protein

pairs with complete feature data decreases, and the number of possible missing

feature patterns increases exponentially with the number of features.

Some classification methods, such as decision trees, can handle missing values in

an automated fashion. Most other classification methods, however, require a full data

matrix as input. It is therefore necessary to first fill in missing data with plausible

values, a process called imputation. It is important for the imputed values to be

consistent with the observed data and preserve the overall statistical characteristics of

the feature table, for example the correlations between features. Below we will

discuss different mechanisms of missing values, followed by a brief description of

several representative methods for missing data imputation.

Mechanisms of missing values

There are two broad categories of missing value mechanisms (Little and Rubin,

1987). The first category is called Missing at Random (MAR). Here, the probability

of a feature being missing can be determined entirely by the observed data. A special

case is Missing Completely at Random (MCAR), where the patterns of missing data

are completely random. Since most missing value analysis methods assume MAR, it

is important to assess whether or not this assumption holds for a given set of missing

values. In general, missing values are approximately MAR for pair protein features.

In one example, synthetic lethal features (Tong et al., 2004) for some protein pairs are

missing because the experiments were not performed due to limited resources. In

another example, structure-based features, such as multimeric threading scores (Lu,

Lu and Skolnick, 2002), can only be computed for proteins with a solved structural

homologue, and will become missing otherwise. These missing values can all be

approximated as MAR.

In certain cases, however, the probability of a feature being missing is directly

related to the missing feature itself and cannot be determined entirely by the observed

data. In this case, the missing data are not MAR. For example, consider a situation

where a protein pair feature is computed for all protein pairs, and only the best scores

(indicative of protein interaction) are kept and the rest of the scores are thrown away

and thus become missing. Here the missing data are no longer MAR, and they cannot
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be treated in the same way as missing due to incomplete coverage. On the other hand,

simply recording all the scores, no matter good or bad, will solve this problem.

Most methods for missing value analysis assume MAR; we briefly summarize a

few representative methods below. Let us suppose that instance x has a missing

attribute A.

Mean substitution, k nearest neighbours and regression imputation

In mean substitution, the missing attribute A in instance x is replaced with the most

common value of attribute A in the whole data matrix, or in the subset of instances

that x belongs to. A major disadvantage of this simple method is that the correlations

between features are not preserved.

In k nearest neighbours (KNN), the distance between instance x and all instances

with complete attributes are calculated, based on the observed attributes in x. The k

nearest neighbours are identified, and the missing attribute A in instance x is replaced

with the weighted average of attribute A in these k nearest neighbours.

In regression imputation, attribute A is regressed against all other attributes based

on all instances with complete attributes. Afterwards, the missing attribute A in

instance x is replaced with its predicted value based on the regression model.

SVD imputation, expectation maximization and Bayesian multiple
imputation

In SVD imputation, all missing values in the data matrix are filled with initial

guesses. Using singular value decomposition (SVD), all instances are then projected

to a low-dimensional feature space spanned by the first k principal components. To

update the missing attribute A in instance x, instance x is regressed against the first k

principal components using observed attributes in x, and the resulting regression

model is used to predict the missing attribute A. After all missing values in the data

matrix are updated, another round of SVD is performed and the whole process is

iterated until convergence. In the case of imputing missing values in DNA micro-

arrays, SVD imputation is found to perform better than mean substitution, but worse

than KNN (Troyanskaya et al., 2001).

The expectation maximization (EM) algorithm is a popular method for finding

maximum-likelihood estimates for parametric models with missing data. Here, all

instances are assumed to be independently and identically distributed based on a

parametric model (for example, a normal distribution) with unknown parameters �.
The EM algorithm makes point estimates for missing data and parameters � in the

following way. First, parameters � are initialized. In the E-step, the missing attribute

A in instance x is replaced by its expected value calculated from the estimates for �
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and observed attributes in x. In the M-step, parameters � are estimated that maximize

the complete-data likelihood. This process is iterated till convergence.

The EM algorithm only provides point estimates for missing data and parameters �.
In Bayesian multiple imputation, the posterior probability distributions for the

missing values and parameters � can be directly simulated using Markov chain

Monte Carlo methods (MCMC), thereby taking into account the uncertainties

associated with the missing values and parameters �. Details on the EM algorithm

and Bayesian multiple imputation can be found in the work of Schafer (1997).

5.5 Network Analysis of Protein Interactions

The recent explosion of genome-scale protein interaction screens has made it possible

to construct a map of the interactions within a cell. These interactions form an

intricate network. A crucial challenge as these data continue to flood in is how to

reduce this complex tangle of interactions into the key components and interconnec-

tions that control a biological process. For example, in developing a drug to attack a

disease, a molecular target that is a central player in the disease is required. The target

must be as specific as possible to reduce unanticipated side-effects.

Below we will introduce two approaches that are particularly important to analyse

protein interaction networks: topological analysis of networks and modular analysis

of networks.

Topological analysis of networks

In addition to protein networks, complex networks are also found in the structure of a

number of wide-ranging systems, such as the internet, power grids, the ecological

food web and scientific collaborations. Despite the disparate nature of the various

systems, it has already been demonstrated that all these networks share common

features in terms of topology (Barabasi and Albert, 1999). In this sense, networks and

topological analysis can provide the framework for describing biological systems in a

format that is more transferable and accessible to a broader scientific audience.

As mentioned previously, the topological analysis of networks is a means of

gaining quantitative insight into their organization at the most basic level. Of the

many methods in topological statistics, four are particularly pertinent to the analysis

of networks. They are average degree (K), clustering co-efficient (C), characteristic

path length (L) and diameter (D). Chapter 8 will give formal definitions to these

methods.

Earlier analyses of complex networks were based on the theory of classical random

networks. The idea was introduced by Erdos and Renyi (1959). The theory assumes

that any two given nodes in a network are connected at random, with probability p,

and the degrees of the nodes follow a Poisson distribution. This means that there is a
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strong peak at the average degree, K. Most random networks are of a highly

homogenous nature, that is, most nodes have the same number of links, k(i)¼K,

where k(i) is the ith node. The chance of encountering nodes with k links decreases

exponentially for large values of k, i.e., P(k) ¼ e�k. This shows that it is highly

unlikely to encounter nodes of a degree that is significantly higher than the average.

Recently, theories other than the classical random network theory were proposed.

One such attempt is the ‘scale-free’ model by Barabasi and Albert (1999) to explain

the heterogeneous nature of some complex networks. In their ‘scale-free’ model, the

degree distribution of networks is assumed to follow a power-law relationship

(P(k)¼ k�r), rather than the Poisson distribution assumed under earlier classical

random network theory. One advantage of having such an assumption is that most of

the nodes within such networks are highly connected via hubs, with very few links

between them. This attribute makes the model particularly applicable to complex

biological networks such as those involving protein–protein interactions. Many aspect

of genomic biology have such a scale-free structure (Qian, Luscombe and Gerstein,

2001; Rzhetsky and Gomez, 2001; Koonin, Wolf and Karev, 2002).

In a concurrent effort by Watts and Strogatz (1998), it is found that many networks

can be attributed with a ‘small-world’ property, which means that they are both highly

clustered in nature and contain small characteristic path lengths (i.e. large values of

C, and small values of L).

Finally, the analysis of complex networks can be further divided into two broad

categories: that is, undirected versus directed. In the former, there is a commutive

property: the statement ‘node A is linked to node B’ is the exact equivalent to the

statement ‘node B is linked to node A’. In contrast, in a directed network, the edges

have a defined direction, and thus the clustering co-efficient is not applicable for

directed networks.

There are many complex networks in biology that can be analysed using graph-

topological tools. Recent advances in large-scale experiments have generated a great

variety of genome-wide interaction networks, especially for S. cerevisiae. Moreover,

there exist a number of databases (e.g. MIPS, BIND, DIP) that provide manually

curated interactions for the yeast organism. Beyond experimentally derived protein–

protein interactions, there are also predicted interactions (Valencia and Pazos, 2002;

Lu et al., 2003), literature-derived interactions (Friedman et al., 2001) and regulatory

interactions (Lee et al., 2002). All of these networks are amenable to topological

analysis.

In order to facilitate the topological analysis of interaction networks, we con-

structed a web tool, TopNet, to perform automatic comparisons. It is available at:

http://topnet.gersteinlab.org/.

TopNet takes an arbitrary undirected network and a group of node classes as an

input to create sub-networks. Then it computes all four topological statistics

mentioned above and draws a power-law degree distribution for each sub-network.

The results of these calculations are plotted in the same format for each statistic to

facilitate direct comparison. TopNet also enables the user to explore complex

76 PROTEIN INTERACTION PREDICTION



networks by sections. For example, all neighbours of a certain node can be shown on

a simple graph. Alternatively, the user can select two nodes and request that all paths

not exceeding some specified length be displayed as an independent graph. Figure 5.2

shows a snapshot of TopNet.

Clearly, the great variety and complexity of biological networks present a wealth of

interesting problems and challenge for the application of topological analysis, which

would lead to better understanding of many aspects of modern biology.

Modeling networks as biological modules

Cellular interaction networks are composed of modules. Biological modules are

conserved groups of proteins and other molecules that are responsible for a common

structure and function. Experimental study of the signalling network of the budding

yeast, S. cerevisiae, sparked the conception of modular signalling networks. These

well studied pathways are an ideal proving ground for computational study of

modularity in biological networks.

Yeast signalling pathways are composed of five distinct mitogen-activated protein

kinase (MAP kinase) pathways. The yeast MAP kinase pathways are composed of

two modules, an upstream sensing component that is responsible for detecting signals

in the environment and a downstream kinase module that amplifies and propagates the

signal while maintaining its specificity. MAP kinase pathways and their modules

are highly conserved in eukaryotes. These modules are key determinants of the

specificity of signalling. The filamentation pathway is one of the least understood of

the pathways. Under certain conditions yeast cells undergo a morphological transition

from a round form to a filamentous invasive form. This is accompanied by an altered

cell cycle and bipolar budding pattern. Little is known about how the signal that

mediates the altered cell cycle is transmitted from the MAP kinase module.

Modelling a biological system as a network of modules reduces the complexity of

the network and pinpoints the crucial interconnections between modules. These

connections can be reprogrammed in evolution, or the laboratory to create new

biological responses. For example a drug that targeted the connection between a

growth factor detection module and a signal amplification module could stop the

progression of cancer by ablating the link responsible for transmitting the aberrant

growth signal. Rives and Galitski (2003) show an example of a network clustering

method that has been successfully applied to biological networks to model their

modular structure. The goal of the clustering method is to define a similarity metric

between each possible pair of proteins in the network. This similarity metric is a

function that can range from �1 to 1, where a higher score represents a greater

prediction that the two proteins are in the same module. Proteins can then be clustered

based on their similarity scores.

This network clustering method was applied to the yeast filamentation response

network to model its modular structure. Modelling a biological system as a network
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of modules identifies key proteins and interconnections. Two important features are

hubs and intermodule connections. Modules tend to have one or a few proteins that

are highly connected within the module. These hubs are essential to the functions of

their modules. While there are many interactions within modules, there is a relative

paucity between modules. The biological functions of proteins that appear as

connections between modules suggest they are crucial points of information flow

constriction and cross-talk.

Protein interaction networks reflect the modular structure of biological systems.

They have a high clustering coefficient and a low frequency of direct connections

between high-connectivity nodes. Members of biological modules have a high

frequency of interactions with other members of their module and a paucity of

interactions with members of other modules. Modules form clusters in the interaction

network that can be identified using network-clustering methods. Biological modules

can be identified in complex protein interaction networks. They can be used to reduce

the complexity of a network by moving up in the biological hierarchy. An induced

graph is a graph in which some nodes are collapsed together into a single node that

shares all of their interactions. It allows a complex interaction network to be reduced

to the interactions between emergent modular components. This preserves important

information while reducing the complexity. Modular modeling opens many avenues

for the investigation of biological systems. As genome-scale interaction data continue

to be produced, methods are required which can identify the important interactions

and proteins. Computational network clustering approaches can be used to identify

these essential proteins and crucial points of cross talk. Furthermore they can be used

to generate testable biological hypotheses.

5.6 Discussion

Among the machine-learning approaches that could be applied to predicting inter-

actions described above, Bayesian networks have clear advantages: (1) they allow for

combining highly dissimilar types of data (i.e. numerical and categorical), converting

them to a common probabilistic framework, without unnecessary simplification; (2)

they readily accommodate missing data and (3) they naturally weight each informa-

tion source according to its reliability. In contrast to ‘black-box’ predictors, Bayesian

networks are readily interpretable, as they represent conditional probability relation-

ships among information sources.

In a naı̈ve Bayesian network, the assumption is that the different sources of

evidence (i.e. our datasets with information about protein interactions) are condi-

tionally independent. Conditional independence means that the information in the N

datasets is independent given that a protein pair is either positive or negative. From a

computational standpoint, the naı̈ve Bayesian network is easier to compute than the

fully connected network. As we add more features, we will find more sources of

evidence that are strongly correlated. This issue can be addressed in two ways: (1) we
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will use a fully connected network or subnetwork to handle the correlated features;

(2) we will use principal component analysis (PCA), in which the first principal

component of the vector of the two correlations will be used as one independent

source of evidence for the protein interaction prediction. For example, in analysing

expression correlations, we found that two of the main datasets were strongly

correlated; however, using the first component of the PCA removed this issue.

Another challenge in extension of our naı̈ve Bayesian integration to incorporate

additional genomic features is the missing value problem (see Section 5.4).

Determination on protein interactions is the initial step and cornerstone towards

mapping molecular interaction networks. Three challenges in the network analysis

remain: (1) 3D view of interaction networks in a cell; (2) dynamics and context-

dependent nature of interaction networks; (3) quantitative measure of networks.

Molecular interaction networks lay the foundation for analysis of the cell in systems

biology. With combined experimental, computational and theoretical efforts, a

complete mapping of interaction networks, and ultimately a rational understanding

of cellular behaviour, will be come reality.
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